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Phase transitions in a nonequilibrium percolation model
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We investigate the percolation properties of a two-stateupied-emptycellular automaton, where at each
time step a cluster of occupied sites is removed and the same number of randomly chosen empty sites is
occupied again. We find a finite region of critical behavior, formation of synchronized stripes, additional phase
transitions, as well as violation of the usual finite-size scaling and hyperscaling relations, phenomena that are
very different from conventional percolation systems. We explain the mechanisms behind all these phenomena
using computer simulations and analytic argume$4063-651X97)07708-§

PACS numbd(s): 05.70.Jk, 05.70.Ln

[. INTRODUCTION particular result in more than one diverging length scale, as
in the earthquake mod¢b] or in the forest-fire model8].

During the past years, systems that exhibit self-organize®y contrast, in equilibrium systems the energy is an exten-
criticality (SOQ have attracted much attention since theysive variable, which means that all regiofwehich are large
might explain part of the abundance of fractal structures inrcompared to the lattice constamtre equal. This is, e.g., the
nature[1]. Their common features are slow driving or energybasis for hyperscaling relations.
input (e.g., dropping of sand graifi$], increase of straifi2], In this paper, we discuss in detail a mof@] that belongs
tree growth 3], and spontaneous mutatio#g) and rare dis- to the mentioned class of nonequilibrium systems with ava-
sipation events that are instantaneous on the time scale &nchelike dynamics. It is a nonequilibrium percolation
driving (e.g., sand avalanches, earthquakes, fires, or a seriesodel, where clusters of occupied sites are removed and the
of rapid mutations In the stationary state, the size distribu- same number of sites that have become empty are occupied
tion of dissipation events obeys a power law, irrespective ot random. The density of occupied sites is the control pa-
initial conditions and without the need to fine-tune param-rameter of the model. The “avalanches” of our model are
eters. There is, however, no reason to expect that systemmemoval events and the size of an avalanche is the size of a
with slow driving and instantaneous avalanches always showemoved cluster. This model illustrates well the fundamental
SOC. Such systems might also have many small avalanchekifferences between equilibrium and nonequilibrium, show-
that release only little energy, or only large avalanches thaing various features that are not observed in equilibrium sys-
release a finite part of the system’s energy, or some combtems: The region of small avalanches and the region of infi-
nation of both. SOC systems are naturally at the critical poinhite avalanches are separated by a finite region of critical
due to e.g., a conservation laggandpile mode¢] a second behavior, where the correlation length diverges more slowly
time scale separatiofforest-fire model a competition be- than the system size. The exponent that relates the system
tween open boundary conditions and the tendency of neigtsize with the correlation length depends on the density. Be-
boring sites to synchronizéearthquake modef2,5]; see, sides the correlation length, there are other relevant length
however,[6] for a counterexampje or extremal dynamics scales. Since the critical behavior occurs over a finite density
(“evolution” model [4]). Often, the critical behavior breaks interval, the system can exhibit power laws naturally, with-
down when details of the model rules are chan@®d., the out fine-tuning of parameters to a precise value. Therefore,
boundary conditions in the earthquake moddlor the tree  our model belongs to the class of SOC systems. In the region
growth rule in the forest-fire mod¢r]). of infinite avalanches, the system shows synchronization

There are certain parallels between these models andith a period that depends on the value of the density. We
equilibrium critical systems since both consist of many smallillustrate and explain all these observations using computer
units that interact with their neighbors and spin clusters in arsimulations and analytical arguments. Part of the results were
Ising model or clusters of occupied sites in percolationalready published if9].
theory can be compared to avalanches. However, the critical The work is structured as follows. In Sec. Il, we define the
behavior of nonequilibrium systems can depend on micromodel. In Sec. lll, the subcritical phase and the critical point
scopic details, as mentioned above, in contrast to equilibriunof the model are treated. The mechanism that leads to criti-
critical phenomena, which commonly show universal behav<ality and the value of the critical density are explained and
ior. Also, nonequilibrium systems do not satisfy a detailed-the exponent of the cluster size distribution in one dimension
balance condition and can, e.g., show periodic behavior. Fulis calculated analytically. Section IV discusses the critical
thermore, avalanches are usually released when sonphase. The reason for the existence of a whole critical phase
variable reaches locally a threshold while other regions ofs well as for its properties such as nonstandard finite-size
the system might be far below the threshold, and consescaling and violation of hyperscaling are explained. The su-
qguently not all parts of the system look equal. This can inpercritical phase is treated in Sec. V. First, we explain the
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existence of synchronized stripes and their relation to the S=p(1-p)/fp. )
subcritical phas€Sec. V A), then we discuss hysteresis and

the maximum possible number of stripéSec. VB, and, |n this limit, p approaches the critical valyg . The dynam-
finally, we investigate stability, movement, and roughness ofcs in the small region of sizeare the same as for the SOC
stripes(Sec. V Q. In Sec. VI, we summarize and discuss our FFMI; and the critical exponents closegg are therefore the
work. same as those of the SOC FFM in the lirfiip—0, when
the f/p dependence is translated properly intgp alepen-
dence(simulation results of the SOC FFM can be found in,
Il. DEFINITION OF THE MODEL e.g.,[]10-13,8). Choosingp as the control parameter instead
of f/p allows us to study the FFM beyond the critical point.
This was in fact our original motivation to introduce the
model studied in this paper.
"~ In the following three sections, we discuss in detail the

The nonequilibrium percolation model is defined on a
d-dimensional hypercubic lattice with® sites. Each site is
either occupied or empty. The control parameter of the sys

tem is the density of occupied sitgs subcritical, the critical, and the supercritical behavior of the

The dynamics are defined by the following ruléS.An — \q46) Unless stated otherwise, the considered system is a
occupied site in the system is chosen at random and thﬁvo-dimensional square lattice

whole cluster ofs occupied sites connected to this sit®yy
nearest-neighbor couplings removed from the system, i.e.,

the occupied sites of that cluster turn to empty sitésWe lll. SUBCRITICAL PHASE AND APPROACH

occupys randomly chosen empty sit¢gossibly also includ- TO THE CRITICAL POINT

ing sites that have become empty due to the removal of the

cluste). (iii) Proceed with(i). First, we discuss the parameter regioa p., where the

These rules ensure that the density of occupied piiesa  system has a cutoff in cluster size that is independent of the
conserved quantity. Starting with a random initial state, thesystem sizeL. Let S be the mean number of sites removed
system approaches after a transient time a stationary stafi@m the system in one time step, without taking into account
that is characterized by a certain size distribution of clustershe refilling of sites. For very small densities, there exist only
where the time average and ensemble average of all quantiery small clusters and most clusters will consist of only one
ties are identical. Throughout this paper, we discuss only theite. The process of removing clustdis this case mostly
properties of the stationary state. These properties, which agingle sitegand refilling sites at random does not change this
explained in detail Secs. Ill-V, are as follows. For smallsituation, i.e.Sis of the order of one, and the occupied sites
densities, there are only small clusters of occupied sites inemain randomly distributed, as for a percolation system at
the system. With increasing density, the size of the largestmall densities.
cluster increases, and it diverges at a critical densityFor With increasing densityS increases also. Removing the
pe<p<p?, the system is critical, i.e. the cluster size dis-chosen cluster and refilling its sites at random into the sys-
tribution is a power law. The size of the largest cluster di-tem introduces fluctuations in the local density of occupied
verges more slowly than the system size. porp?, the sites because the removed cluster leaves behind a “hole”
system has a finite number of regions of different density@nd the refilled sites increase the densﬁy in the rest of the
The region with the highest density has a spanning clusterSystém to a value larger tham The critical densitypc,

One can think of the dynamics of this model as “explo- WhereS diverges, and the critical exponents closeptoare
sions” that take place at a randomly chosen site. During thdherefore different from their values in percolation theory.
explosion, the whole cluster connected to the explosion site We define the usual quantities that are investigated in per-
is blown up and its constituents settle down somewhere elsgolation systems(for an introduction to percolation, see
in the system. Alternatively, one might think of colonies of [14]): The number density of clusters of occupied sites of
animals that are dispersed into all directions by some enem$ize s Will be denoted byn(s). Near a critical density,
or other event. From a more abstract point of view, one ha8(s) is expected to behave like a power law
a nonequilibrium percolation problem.

This model is also closely related to the self-organized n(s)s™"C(S/Smax) 2
critical forest-fire mode(FFM) [3] when occupied sites are
equated with trees: Fg¥<p., the correlation lengtlf and  where C is a scaling function anGma.e|p.—p| Y. The
the mean number of removed sites per stegre finite and  average cluster siz8 is defined by
all properties of the stationary state can be found by looking

at a section of the system of linear sizewith £</<L. In %

this section, there is no conservation of density and the dy- E s?n(s)

namics can be characterized by a small “tree growth” rate _s=1

p=Sp(/IL)¥(1—p) and a “lightning” rate f=(//L)°. == 3
The tree growth rate is the probability that a given empty site >, sn(s)

becomes occupied during one step and the lightning rate is
the probability that a given site is “struck by lightningdT.e.,
selectedl per step, with the consequence that all “trees” con-and is expected to diverge like

nected to this site “burn down'{i.e., are removed S di-

verges in the limitf/p—0 as Sx|p.—p| 7. 4
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The correlation lengtl¥ is defined as the root-mean-square
distance between occupied sites on the same cluster, aver-
aged over all clusters, which leads to

0

> R¥(s)s?n(s)

s=1

e S— (5)
21 s2n(s)

Near a critical point¢ is expected to diverge like

Ex|pe—p|™". (6)

The radius of gyratiorR of a cluster grows with its size
like

R(s)estdr, )

with the fractal dimensiom;. These critical exponents are
related via the scaling relations d# y/(3—7)=d;v. Fi-
nally, the strength of an infinite cluster is denoted RyIn FIG. 1. Stationary state at=39.3% andL = 1024 (with peri-
percolation,P follows a power law odic boundary conditions, square lattice with nearest neighbors, oc-
cupied sites are black, and empty sites are white
Px(p—pc)?

above the critical point. p()=1=(1=p™exp(~py). ®)

In our simulations, we foung.=40.8%, 7=2.153),  Here time is measured since the removal event that produced
di=1.962), »=1.205), and y=2.095). The values of that patch, leaving behind a small density of occupied sites
these exponents as well as the value of the critical density(g)=pafe" we also define the mean densi#j*™"® of a
p. are different from percolation theory, and they are identi-patch just before its spanning cluster is removed and the time
cal with the corresponding values of the SOC FFEM. TheT that it takes to increase the density fraif to pPere we

p.—p dependence of our model can be translated into th@asily deriveT = (1/p)In[(1—p)/(1— p¢"9]. The aver-
f/p dependence of the FFM using E¢4) and (1), giving age density of a patch is

before after

p —p ) )

pe—p(fIp)t. 1T -
In

Thus our values o and v can be calculated from those of 1-p
the FFM by multiplication withy. 7 andd; are exponents
related to the cluster siz& so no multiplication withy is
necessary. The exponeftvanishes, as we shall see in Sec. We measured the average valup®™©®~62.5% and

V. pae'~7 8%, similar to the values found {15,8]. Interest-

The above-mentioned fluctuations in the local density ofingly, the same values will play an important role in the
occupied sites can easily be seen by looking at a snapshot ofitical phase and in the striped phase discussed in Secs. IV
the system for densities close enough to the critical densityand V. With the measured values pf®™ and p2" we
A typical stationary state for the densifi=39.3% and sys- obtain as average density of one regipn39.2%. For large
tem sizeL=1024 is shown in Fig. 1. One can see that theenough system size? and neglecting the interactions be-
system consists of a large number of regions with differentween the different regions, the time average of the overall
and rather homogeneous density. The typical size of thesgensity p would also bep=39.2%. In a real system with
“patches” does not depend on the system dizeprovided interacting regions, the mean density is in general different
thatL is large enough. Many properties of the model can bedue to the following two mechanism@) There are temporal
understood by describing the system in terms of thesescillations in patch size: During the growth process of the
patches of homogeneous density of occupied sites. For smalensity of a patch fromp?™ to pP¢™'® all the neighboring
average patch sizgike in Fig. 1), it is not always possible to patches have one removal process on an average. During
assign a given site unequivocally to a certain patch. Thigach of those removals, also some sites of the central patch
changes, however, when the critical density is approachedyre removed because patch boundaries are not cluster bound-
where the mean patch size is larger and the patch boundariesies. This leads to a shrinking of the area of the original
become sharper. patch while its density increases, reducing the mean density

For large system size?> S, only a few sites are occupied from the above calculated valuéOf course, the original
in a given patch per time step and the denpity) in a patch  patch size is ultimately restored when the spanning cluster of
evolves continuously according 1@ (t)=p[1—p(t)] with  the central patch and some finite clusters of neighboring
some growth rat, which leads to patches are finally removedThe relative shrinking of the

1— pbefore
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n(s)

0.60 0.62 0.64 0.66 0.68 0.70 ) o
phefore FIG. 3. Upper curve; cluster size distributiorfs) of a homo-

geneous system at the percolation threshple=59.3%; lower
FIG. 2. Average density for various values op**™®between  curve; cluster size distribution(s) of a system with densities be-
59.3% and 70%. The minimum is at approximately 62.5. tween pa" and p°¢™ distributed according to Ed8). Both sys-
tems have sizé& =2048. The dashed straight lines have slope 2.06
area is stronger for smaller mean size of removed patcheand 2.15, respectively.
since the number of sites removed from the central patch
depends on the length of its boundary. For large mean size @lystem sizel is large enough, the time average equals the
removed patches, the ratio of the initial patch size to the finagnsemble average and the cluster size distribution should be
patch size approaches 1, i.e539.2%, which explains why given by
the density is smaller than the critical density when the mean
size of removed patchdsf the orderS) is finite. (Fluctua- ” ST 2 7 A DB S APty 2
tions in the size of removed patches are complicated to con- n(s)ocfo dtp(WT1=p(D]"= fo di1—e"")xe"™)
sider and do not affect our main conclusign@.) The criti- <
cal density itself is larger than the above valpe 39.2% * S K Kt 2t
because the density at which a removal event takes place ocfo dtgo k) (~Dre e
fluctuates around its mean valpé® Assuming a homo-

geneous distribution of occupied sites within a region, we ° /s ! 1
measured the mean densipy for various densitiegp®"® =2 K/ D 5

, D k=0 (s+1)(s+2)
between 59.3% and 70%. The result is shown in Fig. 2. One
can see that this function has a minimum for the measured ~s™ ?for larges,

average value 0pP*""~62.5%. Any fluctuation will there-

fore lead to an increase in the mean valugoThe fact that in agreement with the exact calculation [df6]. Similarly,
the density is so close to its minimum indicates a tendency othe size distribution of hole clusters is found to be

the system to maximize energy dissipation. To obtain the

order of magnitude of the shift ip; due to fluctuations, we o 5 s

calculated numerically the mean density in the simulated in- h(s) fo dip()T1-p(V)] “m
terval[ p,;0.70] of p®'® The result is 40.8)%), which is

close to the correct critical density,=40.8%, indicating ~s~3for larges,
that the fluctuations ip°®™can indeed induce the observed

shift in the density. again in agreement with exact resyll&/,16|.

These considerations show that the critical state of our For dimensions higher than one, unfortunately, these cal-
model can, to a good approximation, be interpreted as a congulations cannot be carried out. There the number of neigh-
bination of percolation systems of different densities, as als®orst of a cluster of sizes depends not only os, but also on
suggested iffi8]. The cluster size distribution(s) is there- the shape of the cluster, and the number of different clusters
fore the superposition of the cluster size distributions of allwith a given sizes and a given perimeter is not known
the patches with their different densities betwgéf" and  exactly. Furthermore, the integration ovetoes not go from
pPere distributed according to Ed8). zero to infinity since the lowest and highest densities are not

Let us first consider the one-dimensional system. Ther® and 1, respectively. We can, however, determine numeri-
the percolation threshold is one and even in dense regions dBlly the cluster size distribution of a combination of perco-
clusters are finite percolation clusters. Removal of a clustelation systems of different densities. We measurés) in 20
leaves behind a string of empty sites. The system is therefolgomogeneous systems with=2048 and different densities
composed of strings of siz8 of different densities that rep- betweenp?™" and p°¢'¢ distributed according to E¢8).
resent different stages in the growth process of an empt¥he totaln(s) of all systems proportional t&2%,n;(s) is
string until it is completely filled. A string of density con-  plotted in Fig. 3, together with the cluster size distribution of
tains a cluster of size with probability pS(1—p)2. If the a percolation system aip=p.,~0.593. The exponent
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TABLE I. Exponentse; , 30f Spa, £, andS for various densi-
ties p V< p<p® (L=512, 1024, 2048, 4096

p b1 b o3
0.41 1.468) 0.792) 1.233)
0.42 1.726) 0.923) 1.50(3)
0.43 1.868) 0.973) 1.623)
0.435 1.928) 0.992) 1.695)

patches with high density, there exist also large patches with
lower densities. Most of the patches have densities below the
percolation threshold and contain many finite clusters. The
patches with high densitigbetweenp, and ~62.5%) con-

tain not only finite, but also “infinite”(i.e., spanningclus-
ters. In contrast to ordinary percolation, there is no homoge-
neously distributed set of large clusters that could join at
p=p. to form the infinite cluster that spans the whole sys-
tem. Rather, besides the largest cluster, the system contains
many other large clusters that represent different growth
. N . stages of the largest cluster itself. The critical behavior of our
FIG. 4. Stationary state at the critical densjty~40.8% and 0del occurs over a finite interve{lp(cl)(=pcw40.8%),

L =4096 (with periodic boundary conditions, square lattice with (2)(%43 $%)], where the cutoff in cluster size di-
. y max

t neighb ied sit black d it & . .
\Tviigs neighbors, occupled sites are black, and empty sites Gerges, but more slowly thah?. The correlation length di-

verges more slowly thah. Since it is not possible to define

7~2.15 for a combination of percolation systems is indistin-2 truly "?ﬁ”“e cluster like "_1 percolation in_ t_his phasg, all
guishable from the cluster size distribution exponent of prlusters in the system contribute to the defining equations of
model, showing that the latter is indeed generated by a sUPmax: ¢, andS. We find
perposition of percolation systems. Figure 3 does not show
the bump observed in our simulations for large~or large Smax*
cluster sizes, the size distribution of patches with density
above the percolation threshold affects the cluster size distrinith p-dependent exponents, , 3, while 7 andd; remain
bution. This effect is not present in Fig. 3, where there are nainchanged. Table | shows the values of the exponents for
different patch sizes. It remains an open question whether thdifferent densities. Figure 5 shows a snapshot of the system
exponentr remains the same for much larger valuessof for p=0.43.
than those accessible to simulations. At very large scales, the
emerging dynamics of patches might become an important
factor in determining the cluster size distribution.

Another conclusion that can be drawn is thatlways has
to be larger than or equal to theof the corresponding per-
colation problemn(s) results from a superposition of many
percolation systems, so that apart from the critical percola-
tion system, there exist also many systems with finite cutoff
in the cluster size distribution. These systems increase the
weight of the small clusters and the slopengf) decreases,
resulting in a largerr. For all dimensions and lattice types
investigated so fa(see, for exampld,13]), this was true.

L%, ¢xL%, SxL%3

IV. THE CRITICAL PHASE, HYPERSCALING,
AND FINITE-SIZE SCALING

For p>p., one might expect the appearance of an infinite
cluster that spans the whole system, as in percolation theory.
However, the values of the critical exponents fosp, al-
ready indicate that the situation in our system is very differ-
ent from percolation. In contrast to percolation, the hyper-
scaling relationd=d;(7—1) is violated, which means that
not every part of the system contains a spanning cluster at F|G. 5. Stationary state at=43% andL = 4096 (with periodic
criticality [10]. This can also be seen easily by looking at theboundary conditions, square lattice with nearest neighbors, occu-
shapshot of a system at=p. in Fig. 4. In addition to large pied sites are black, and empty sites are wWhite
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FIG. 7. p as function of the number of patcheswith densities

after before
FIG. 6. Normalized size distribution of clusters for0.43 and betweenp™ and p™

L=512,1024,2048,4096a) before andb) after rescaling.

before after
—p

p
Figure 6 shows the size distribution of clusterys) for p=1- 1 _ pheforg (1 _ paften1—1h_ 1
different system sizes at fixadl () before andb) after res- MIL=p™ /(1= p™5)] '

caling. With Egs.(2) — (7) one can derive the scaling rela- ¢, yhe density of a system that takesime steps to go from
t!ons qSl:dfd;z_and ql_>3=(3—r)¢l,zwh|ch are well con- pafer tg pbeore |n Fig. 7, p is plotted as a function of the
firmed by the simulations. FQW—HD(C ), ¢1,3approach the  1ymber of patches. One can see that a decreas@ iraises
valuesd;, 1, and 1/, respectively. the mean density(Of course, this conclusion can also be
The latter values are those that one would already havgptained from an analytical calculatiorithis effect supple-
expected ap=p(" from finite-size scaling theory. In a criti- ments the two other mechanisms that affect the mean density
cal system, a quantit( that scales akT —To| ¥«&¥”inan  presented in Sec. Ill. For fixed and changing., these three
infinite system, in a finite system is expected to obey thenechanisms have to be in balance with each other. While the
scaling form step size decreases with increasindending to decrease the
R density, the size of the large patches and the fluctuations in
X(L,&)=&X"X(&IL), pPerincrease, canceling the effect of the smaller step size
on the density.
with So far, we have not yet discussed the possibility of fusion
and splitting of patches. As soon as two neighboring patches
const forx<1 have a density above the percolation threshold, they fuse and
x XV for x>1 will be removed together. This effect must be balanced by a
mechanism that splits patches. As long as the density of a
such that forg<L, X=|T—T,| X, like in the infinite system, patch is below the percolation threshold, neighboring remov-

and forL<¢, X=LX'”. The standard finite-size scaling expo- als move the boundary of this patch inward and a splitting
nents of s ¢ and S would therefore be Lio=d; into two patches occurs when opposite boundaries meet. A
max:s l

_ splitting can also occur when a finite cluster connecting two

viv=1, and 1b. ; . oo
pposite edges of the patch is removed before the density in
e patch reaches the percolation threshold. Since even large
patches must split at the same rate at which they fuse with
neighboring patches, the shape of patches cannot be round,

X(X)=

The main difference between our system and percolatio
concerning finite-size scaling is that in percolation a syste
of lengthL 54 Without finite-size effects can be generated by

tti t th t ith finite-si ffects of | th - . -
pUtiing fogener Sysiems with fnfte-size Hects ot feng but must be “fingered,” with necks of a width that does not

Lsman- In our model, a reorganization takes place when . :
smal g b lepend on the patch size. The snapshots Figs. 4 and 5 show

smaller systems are put together since the smaller systen‘f1 i o o
now can have fluctuations in their number of occupied sited"® fmgered_structu_re. It |mpl|_es some characterls_tlc length
cale, the “finger thickness,” in addition to the lattice con-

that they could not have when they were isolated. Due to th§t ¢ and th lation lenath. Thi lei functi f
inhomogeneous nature of the stationary state, these fluctu tant and the correiation length. This scale IS a function o
the density and the system size. The existence of several

tions are very large.
We obtain a deeper understanding of the critical behaviotength scales was also observed &)

of our model when we describe the system again in terms of

patches of different densities. In Sec. Ill, we found that the V. SUPERCRITICAL PHASE
density within a patch grows continuously fpr p. and for
sufficiently large system size. For not sufficiently large sys-
tem size and fop>p., however, the finite system size leads At p= pg2> , the correlation length finally becomes propor-
to discontinuous jumps in the density within a patch. Thetional to the system size and the system has an “infinite”
noncontinuous version of E@Q) is [see Eq.(13) below] cluster that contains a finite percentdgelependent ok ) of

A. Synchronized states
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FIG. 9. Stationary state with four stripes at=0.46 and
L=4096 (with periodic boundary conditions, square lattice with L=4096 (with periodic boundary conditions, square lattice with

nearest neighbors, occupied sites are black, and empty sites Jpgarest neighbors, occupied sites are black, and empty sites are
white). white).

FIG. 8. Stationary state with five stripes at=0.45 and

all occupied sites in the system. Figure 8 shows a snapshot 8¥Steém, or one of the finite clusters, which, consequently, are
the system fop=0.45. We see a system with five homoge- VY small. In the first qase,_only a few _smgll clusters remain
neous and equally large stripes with different densities. Th&nd most of the occupied sites are redistributed randomly in
stripe with highest density is above the percolation thresholdn€ system. In the second case, only a small number of oc-
and contains an infinite clustéwith nonzero strengt®) as cupied sites are redlstrlbuteq. In both cases, however, the
well as some small clusters. The other stripes are below théfate of the system changes little and the new state is close to
percolation threshold and, consequently, contain only smafft completely random state. o
clusters. When one of the small clusters in this state is re- |f we now decreasg, the remaining clustergafter the
moved, only a few sites are redistributed and the state of thigmoval of the infinite clust¢ibecome larger and the density
system remains essentially unchanged. When the infinite
cluster is removed, a large portion of all occupied sites in the
stripe with the highest density are redistributed all over the
system. The stripe that used to have the highest density now ¢
has the lowest density, while the density of the other stripes
has increased. The values of the five densities are the same a
before, except that they are now associated with different
stripes. If we measure time in units of large redistributions of
sites, the state of the system is periodic with period 5.

Increasingp, we find four stripegFig. 9), three stripes
(Fig. 10, two stripes(Fig. 11), and finally one “stripe”(Fig.
12), where the infinite cluster spans the whole system. The §&
spatial shape of stripes depends on lattice symmetry and
boundary conditions. In the case of a two-dimensional square £
or triangular lattice with periodic boundary conditions, the
system self-organizes into stripes with the boundaries along
one of the principal axes. For absorbing boundary condi-
tions, the stripes are replaced by regions of a different shape
(see Fig. 10

To understand the occurrence of stripes with different
densities, we consider first a system with a very high density
p=<1. Since we are far above the percolation threshold
p.~0.593 for random site percolation, the strength of the FiG. 10. Stationary state with three regions of different density
infinite clusterP is close tOp. We start with a random initial at p=0.50 andL=2048 (with absorbing boundary conditions,
state. In the first iteration step, we remove either the infinitesquare lattice with nearest neighbors, occupied sites are black, and
cluster, which consists of nearly all occupied sites in theempty sites are whije
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FIG. 13. Schematic picture of the stationary state at a density
just abovep*. Light (dark gray regions have lowethighe) than
average density.

and the state with one stripe becomes unstable. Evidently,
, . . *>p..
FIG. 11. Stationary state with two stripes at=0.55 and P N - * .
L=1024 (with absorbing boundary conditions, square lattice with 'I_'he approximate value gf* can be derl\{ed by the fol-
nearest neighbors, occupied sites are black, and empty sites all%wmg afg”“?e’.“: The num_bezr of emply sites aﬂ.er the re-
white). moval of the |nf|n|_te cluster is [1—(p— P)]._Let this sub-
set of the total lattice be denoted By It contains the area of
the infinite cluster and the sites that have already been empty
fluctuations increase. When the removed sites are refillegefore. |n the next step, the?P occupied sites of the infinite
into the system, part of them are positioned in or near thesgjyster are redistributed randomly among these empty sites,
surviving clusters, where the density then will be larger thaneading to a density’'=P/[1—(p—P)]<p in D. In the
the mean density. In the space between these clusters thginity of the clusters that were left over the local density is
density consequently is lower than the mean derisié¢ Fig. now higher than before. One can think of this state approxi-
13). If p falls below a certain thresholg*, this density mately as consisting of many compact clusters embedded
between the surviving clusters becomes smaller than the peifto a lower-density backgroun@ee also Fig. 13 It is then
colation thresholg, . Then, there exists no infinite cluster in obvious that the homogeneous state with an infinite cluster
the system after the first time stépr after a few iterations  stretching over the whole system cannot survive'i& p.,
since, in this case, the infinite network that links the finite
high-density regions is broken. On the other hang, it p.,
the situation is not fundamentally different from the case
p=<1. Fluctuations in the local density do exist, but they
cannot get stronger with time since the high-density regions
are themselves removed from the system with high probabil-
ity during the next few iteration steps. Thus we arrive at the
implicit approximate equation for a threshold density,

P(p=p™*) _ Pe 10
1-p* 1-pc

In the simulations, we foung* ~0.625 for the square and
0.533 for the triangular lattice. A measurement of the left-
hand side of Eq(10) at p=p* and L=1024 yielded ap-
proximately 1.46 for the square and approximately 1.01 for
the triangular lattice. The values of the known right-hand
side are approximately 1.46 and 1, respectively. Although
Eqg. (10) is approximate, the agreement with simulation re-
sults is very good.

If p falls belowp*, the homogeneous phase becomes un-
stable and the system rearranges itself to a new stationary

FIG. 12. Stationary state at=0.63 andL =1024(with absorb- ~ state that consists of two homogeneous stripes with equal
ing boundary conditions, square lattice with nearest neighbors, oc&rea and different densitigg andp, (p1>p,). For p=<p*,
cupied sites are black, and empty sites are white we have p;>p* and p,<p*. When the infinite clus-
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sn(s)/n(1)

10° 0.0 20.0 40.0 60.0 80.0 100.0

10° 10 107 1 I 10°
s plocal
FIG. 14. Cluster size distribution of a system @t 0.46 for FIG. 15. Histogram of the local densipj,c, for L=1024 and
various system sized £512,1024,2048,4096 p=0.46, averaged over 20attice sites.

ter in this new state is removed, the density of stripe 1 de_re_fille_d into the_ system. As a consequence of a_large r_e_dis-
T - tribution, the different stripes just exchange their densities,

creases tp;=p;—P. Now these sites are reinjected ran- ie.
domly into the system, such that stripe 1 is filled up$cand
stripe 2 top;. The net effect is that the two stripes have  p,_;=p;+(p1—pn+1)(1—pi)/[N(1—p)+p1—pn+1]
changed their roles.

If we lower p further, we will eventually reach the density ) ) .
p for which p,=p*. At this point the two-stripe state be- fori=2,...n+1. _The last fac_tor on the rlgh_t-ha_nd side
comes unstablébecause the highest-density stripe becomedepresents the fra_tcnon of o_ccupu_ad sites Qf the mfmyte cluster
unstableé and reorganizes into a three-stripe state, thereb{at are refilled in the stripe with densiy;. We finally
increasingp,; such thatp,;>p* again. The dynamics of the Obtain
three-stripe state is analogous to the two-stripe state: When
the infinite cluster is redistributed, the stripes simply ex- =0 1-9.
change their densities (32, 2—1, and 1-3). With de- P2 P3
creasing density, the number of stripeéncreases further. Together withp=(1/n)3,_,"p; we haven equations for

The stripe structure breaks down when the system sizg 11 densities. The average density in a system with
becomes so small that the width of a stripe is of the sam@tripes is then

order as the roughness of its boundary. The resulting state

1-pa_1-po  1-pn
1=pns1’

(12

shows patches of different size, but differs from the critical 1—pni1 n 1—p, \VM

state in its cluster size distribution. In Fig. 14, the cluster size p=1- - (1_p )

distributions for a system at=0.46 in the “patched” state o et

(L=512,1024) and *“striped” state L(=2048,4096) are P1—Prii

plotted. The transition between the two seems continuous, =1- i : (13
due to finite-size effects. With increasing the bump be- N{[(1=p)/(1=pn+1)] "1}

comes more distinct because the system tries to separate OPRis equation was already used in Sec. IV

infinite cluster from the ensemble of all clusters. There isno 114 striped phase has several features in common with
scaling ofn(s), not even in the “patched” states. With in- he critical and subcritical phase: They can all can be char-
creasing system size, the bump should separate completed¢terized by regions of different density. The density of these
from the size distribution of finite clusters and move towardSregionS goes through a Cyc|e and the Spanning cluster of a
s=. The distribution of densities in the system changesegion is removed when its density is of the order

also continuously with increasirigwhen the transition from  p* ~62.5%. Although there is no strict synchronization in

patches to stripes is made. Figure 15 shows a histogram difie subcritical and critical phase, the system seems to main-
the local density fo. =1024, i.e., for the patched state, av- tain many features of the synchronized phase, albeit with
eraged over 2D sites. This histogram shows pronouncedmore irregularities and fluctuations. If there were no regions
peaks that are precursors of the stripes. In the limit of infinitewith p,c.o= p* , they would be generated by the same mecha-

system size, these peaks will become infinitely sharp. nism as in the synchronized phase. The resemblance to the
The densities of the different stripes are related by severaynchronized phase is especially evident in the one-
equations. Lep,, ... ,p, be the densities in a state with  dimensional case. There the critical point can be interpreted

stripes, starting with the highest density. Additionally, weas a synchronized state wigt =1, p®=0, and an infinite
define the density,, ; of the stripe that contained the infi- number of stripes.

nite cluster, immediately after the infinite cluster has been From our understanding of the striped phase and its sta-
removed from the system and before the removed sites atlity, we cannot rule out the existence of gaps, i.e., values of
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the density for which no synchronized phase is stable. The TABLE Il. PercentageP of the largest cluster and the correla-
following scenario could occur. When decreasing the densityion lengthé for different densitiep=0.57,...,0.62 withL =512
of an n-stripe state below the stability threshold, the newandL=1024

density in stripe 2 after the restructuring could be too large
(i.e., greater tham,) for the state to be stable. In this case, »  P(L=512) P(L=1024) §L=512) ¢&(L=1024)

the new (1+1)-stripe state would be stable only after low- g5 57 58
ering the overall density a bit further unphb<p.. The in- 0.58 85 89
termediate state unld the_n hav_e some irregular patched 0.59 133 145
s;ructﬁre. However, in our simulations we could not observe 0.60 0.33 0.34 62 75
this phenomenon. 0.61 0.46 0.47 36 28

0.62 0.52 0.53 13 14

B. Hysteresis and maximum number of stripes

Since the transition between states with different number%orrelation length of the finite clusters in the interval

of stripes is discontinuous, hysteresis effects are to be exs :
o . . '0.57=p=0.62, which shows a pronounced peak around
pected. When the overall density is decreased adiabati- p=0.59 for bothL =512 andL = 1024 (see Table )i. These

Ci‘lz O 66‘25St§r?d bitescor:r;(;']sbeurnzt? Tterip\ggﬁiﬁ:] Cl;ggssegeg)w on eresults show that the percolation threshold for stripes is very
?thereby also increasing,). When p is increased adiagati- ctlose(if not identica) to p. for site percolation. Thus states

callv. however. there is no reason whv the svstem shoul ith p,>0.59 cannot exist, and there must exist a minimum
neci/a'ssaril reérran e itself at=p* Th{e stri gwith the ensity gapAp=p, —pp and, consequently, a finite maxi-

) y € 9 pL=p". pe v . mum numbemN of stripes. Equatiorf12) gives a maximum
highest density can never become unstable since it onl

comes closer to the ideal case Pfp,) = p;, where it con- ?Sossible number ofi=11(+2) stripes and a corresponding

’ ini ity= + 0 i i
sists only of the infinite cluster. The reorganization from anmnimum mean dens_lt)o 42(+0.3)%. In our S|mqlat|ons,
(n+ 1)-stripe state to am-stripe state is then triggered by due to finite system size, we could observe a maximum num-
the stripe with second highest densijty. In the limit of ber ofn=>5 stripes ap=0.45 and. = 4096 (see Fig. & For

infinite system size, it takes place when this stripe starts tother lattice types, the maximum number of stripes and the
© System size, 'S P P Uensities where the phase transitions take place are of course
contain an infinite cluster, i.e., whgr, approaches the per-

lation threshold. As lon < ven the largest cl different. The realization of an infinite number of stripes
colation thresnold. As long g = pc, €ven the largest clus- (i.e., a front moving through a continugns possible with
ter in stripe 2 is small compared to the infinite extent of on

: X NEjitferent rules, where the occupied sites of the chosen cluster
stripe anq cannot have any effect on the dynamics. For f'n'tgre removed one by one and are put back into the system
system size, however, the reorganization takes place as s '

OBBfore the next site is removedee[18)).
as the raticg, /D exc_eeds a certain critical value, V\(h@es . A schematic phase diagram of the system for all densities
a measure for the linear extent of one synchronized regio om 0 to 1 is shown in Fig. 16. Since a state witlstripes
(@s, eg. _the th!ckr_1ess of a stripe n the two—dlmensmnais only stable if the thickness of a stripe is much larger than
system with periodic boundary conditionsTherefore, the &,, the phase boundaries depend on the system Lsifr
effect of hysteresis in a finite system is difficult to observesﬁ’qa” L. They become vertical for large and the values of
v_vhen the number Of stripas increases. Only for the transi- , Where the phase transitions take place, are well defined.
tion from the two-stripe state to the homogeneous state coul

we identify a significant interval of hysteresis. The two-stripe S One can also see in Fig. 16, the minimum Qe?3|ty of the
state couid be kept alive up jo=0.64 for L =4096. synchronized phase is smaller than the upper ljiffit of the

In the following, we argue that there exists an upper Iimitcritic:al phase. Since the transition from patches to stripes is

to the number of stripes even in an infinitely large system. discontinuous, it shows also hysteresis.
When loweringp, the differencep, — p, decreases with each
additional stripe. If the number of stripeswas not bounded L
from above, we would have;—p,—0 andp;—p*. Such a

state could only be stable if the maximum cluster size was
finite in all stripes but stripe 1, which, in turn, could only be
possible if the percolation threshold was identical gtb. : ;
Since the distribution of occupied sites within a stripe is not suberitical ; /3/
completely random, the percolation threshold can be differ- phase | ! /
ent from the threshold for conventional site percolation. We | critical
can find its value by simulating the density sequence phase
(Pn+Pn-1,---,p1) for a single stripe. We start with a sta-
tionary state with density just abovep*. We remove the
infinite cluster and fill the system again randomly and con-
tinually, and we measure the percentage of the largest clustel
for two different system sizes. The results are shown in 1 5
Table Il. We see from Table Il that an infinite cluster exists Re P
already forp=0.60 sinceP is nonvanishing and does not  FIG. 16. Schematic phase diagram of a two-dimensional square
decrease with increasing. Furthermore, we measured the system for all densities from 0 to 1.

P
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C. Stability, movement, and roughness of stripes TABLE Ill. Roughness exponent, growth exponeniB, and

In systems withn>3 stripes, there exists the possibility velocity v of the stripes for various densities (200 <2000).

that the stripes might not be arranged in consecutive order

. : " No. of
with respect to their densities. However, these arrangements stripes  p p? « B v
are not stable, as will be shown in the following. If the
stripes are arranged in consecutive order, the stripe with 0.46 4 0.63 0.53 5(8)
highest density always has the same densities in its neigh- 0.50 3 0.66 0.51 0.440) 0.355 4.35)
boring stripes during the complete cycle of lengthEach 0.55 2 0.66 0.44 0.460) 0.255) 0

time the infinite cluster is removed, the borders of the stripe
it has occupied expané, to one side and, to the other.
Since during one cycle the infinite cluster occupies eachf this density is lower than the perturbed density
stripe position exactly once, all changes of width cancel.=p8+ 8, the system tends to return to the unperturbed con-
Sinceé,> &, , the whole pattern moves into the direction of figuration and the initial state is stable. For stability, thus, the
the stripe with second highest density, as seen from the infifollowing inequality has to hold:

nite cluster. If the stripes are not arranged in consecutive

order, e.g{p1,p3,p2,p4}, the changes in width do not can- 1-p9+6
cel. The left neighbors of the infinite cluster during one cycle pg— 5+ (P%+ 6P") o o -
are p,,p»,p3,ps and its right neighbors args,ps,p4,p». 2=(patp3)t P
Therefore, there is a net change of the width of some stripes 0

on the expense of others and sooner or laiepending on <pg+ po 1=p>

system sizgthe structure breaks down and the system rear- 2—(p5+p3)

ranges itself to a state with the stripes arranged in consecu-
tive order. The instability of certain configurations like the on the right-hand side, we have usgl=pS+P%(1—p9)/

one mentioned above was tested by starting with an artifi[z_(po+po)] from Eq. (L1). This inequality can be rewrit-
cially generated stationary state with the “wrong” order of ., a52 3

stripes. After some time, the restructuring to the stable sta-
tionary state could be observed. 0 0
Similarly, if the area of different stripes is different or if P’ < 41-p)+3P _
the values of the stripe densities are not the same after each {1-PY%[2(1—p°+P%)T}(1—pI)
rearrangement of occupied sites, different stripes “see” a
different environment when they are removed. Such stategye measured all quantities that appear in Ej) in the
therefore cannot be stable. However, when they are closgensity interval where the two-stripe state could be observed
enough to the stable state, they return to it, as follows fromuynd found that it is completely contained in the interval
the observed stability of striped states. In order to checkyhere this condition is fulfilled.
exp'lClt'y the Stablllty with respect to variations in the den- As a|ready mentioned above, the whole pattern of Stripes
sities in a system with two stripes, we start with an unpermoves into the direction of the stripe with second highest
turbed state at density® with two stripes of densityp}  density seen from the infinite cluster. This movement can be
and pJ, respectively. The strength of the infinite cluster observed in the simulations for all states with2. The net
is P°=P(p?) andp?—P°=pJ. Now we perturb the system velocity in a two-stripe state is zero due to symmetry. We
by changing the densities tp1=p2+ o and p2=pg— S measured the velocity of this movement for stationary states
with small §>0. The overall densitp® is kept constant. The With three and four stripes at=50% and 46%. The results
strength of the infinite cluster is nowP=P(p,) arev~4.3+0.5 lattice sites per iteration step fe+50% and
= p(pfl)+ 8)=P%+ 5P’(p2). After the removal of the infi- v§5.2i0.5 for p=46%. Since th_e degree to yvhich the infi-
nite cluster the densities apg=p,— P=p3— (P’ —1) and  Nite cluster reaches into the neighboring stripes depends on
their correlation lengths, the velocity is essentially deter-
mined by the density in stripe 2. As one can see from Table
lll, p, is larger forp=46% than forp=50%, therefore the

(14

p2=ps— 6. Using Eq.(11) one obtains for the highest den-
sity in the next iteration step

1_pg+ 5 velocity is higher forp=46%. The movement of the stripe
phe=pS— 5+ (P°+ 6P") o - boundaries can be seen in Fig. 17, where a sequence of sta-
2= (p3tp3)+ 6P tionary states of a three-stripe state is shown.

FIG. 17. Sequence of stationary states of a three-stripe state 50% andL=1024. The snapshots were taken at tirhgsty+ 51,
to+102,t,+ 153, andty+ 204.
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As one can see in Fig. 8, the stripes seem to have rough 10°
rather than smooth boundaries. When the infinite cluster is
removed, all finite clusters in the adjacent stripes that are
connected to it are also removed. This leads not only to a net
velocity in one preferred direction, but also to a roughening
of the stripe boundaries, even in situations where(#réfi-
cially generatef initial state consists of strictly horizontal
stripes.

The roughness of the interface is characterized by an ex-
ponenta that describes how the saturation width of the in-
terfacewg, scales with its length.,

w(t)

Wsa(l—) oL & t "

The interface WidthNE defined as thegot mean square of
the differencey(x) — y(x), wherey(x) [y (x)] is the[aver-
aged y coordinate of the interfacéassuming horizontal
stripes

FIG. 18. Widthw of the stripe boundary in the cases-2
(lower curvg andn=3 (upper curvg for smallt. The dashed lines
have slope 1/4 and 1/3, respectively.

L
w(L,t)= \/%E [y(x,t)—Wt)]Z, nearest occupied neighbors leaving behind an empty site. In
=1 order to ensure a constant density, one has to reoccupy ran-
_ domly chosen empty sites. Starting with a flat excitation
with y (t)=(1/L)Z;_;"y(x,t). We assume thaf(t) is single  front in an initial state of average densjiyafter a short time
valued, i.e., there are no overhangs. This assumption is akither the front will have disappeared or the system will have
ways correct at sufficiently large scales. evolved to a stationary state, where the front propagates
To characterize the time-dependent dynamics of theuasideterministically in one direction. After leaving the sys-
roughening of the interface width(t), the growth exponent tem at one end, it reenters at the opposite end. Although the
B is introduced by front state can be interpreted as a stripe state with,
there is one important difference. In the stripe state, the in-
w(L,t)oct?, finite cluster sees a medium with density belpwin front of
. . : it, whereas in the front state, this density is abg¢e One
For smallt, therg IS no dependenge bnsince th? informa- therefore cannot expect to find KPZ behgvior as?nién the stripe
tion on system size ne_eds a certain amount of time to spreaé:ate_ Instead, the shortest pathsing only occupied sitgs
For an infroduction to interface roughening, $@6]. from the sites of the front at timie= 0 to the sites of the front
We measured the roughness exponenas well as the at some later time have a Gaussian distribution, leading to a
growth exponenp3 for stationary states with two and three width of the interface that scales aslljy(i.e., a=0. Figure

i = 0, 0, i . . . .
str!pes alp =55% an_d 5.0/0' States with a larger number Of19 shows the saturation width as function of the system size,
stripes can only survive in large systems, so we were not ablf%gether with a logarithmic fit

to scan a broad enough range of system sizés determine One can also compare this behavior with the behavior of

an exponent. Since at sufficiently large scales there is an excitation front in a percolation system without periodic

up-down symmetry in the case=2, which is absent in the ),,,qary conditions perpendicular to the front, i.e., a system
casen=3, where the boundary moves in one preferred di-

rection, we expect different exponents.

The results fore and 8 are shown in Table Ill. Figure 18 130
shows the roughening of the boundary for the case
and n=3. The simulation results are compatible with the 1ol .
valuesae=1/2 andB=1/3 forn=3 anda=1/2 andB=1/4 -
for n=2, although other values cannot be ruled out. The

former exponents are those of the Kardar-Parisi-Zhang uni- 8o
versality class[20], whereas the latter belong to the Wt
Edwards-Wilkinson universality clag&1], describing an in- 70l _ N

terface in thermal equilibrium. For afi=3, the boundaries

exhibit a net movement in one preferred direction, thus 1

breaking the up-down symmetry. Therefore, we expect to -

find the KPZ universality class also in the cases4 that

could not be investigated in the simulations. 30
In the limit of a large number of stripes—«, the move-

ment of the infinite cluster is reminiscent of the movement of

a front. To study the dynamics of such a front, we introduce FIG. 19. Saturation widthwg, of an excitation front at

a third statg“excited” ) that marks the sites belonging to the p=45% and p*™"®=74% (L=200,500,1000,2000 The smooth

front. The excitation spreads at each time step to all of itsurve is a logarithmic fit.

200 500 1000 L 1500 2000
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of sizeL parallel to the front and of sizest” perpendicular

to it. The “infinite” extension perpendicular to the front
would in practice be realized by providing a constant, homo-
geneous density ahead of the front, such that the front wil
never pass through a region where it already has been befor
and additional correlations due to sites left over from the las
passing are eliminated. In this case, the stability argument -
of Sec. V A and of[18], which lead to the instability for
pPeore< p* " are no longer valid, and one can investigate the
properties of the front in the whole density interval of
p"®€c[p.:1]. Then one can also measure the exponen
that describes how the velocity of the front vanishes wher
the densityp®™"® approachep.. As in the preceding para-
graph, we expect that such a front has a roughness expone
a=0. Models that yield a front of finite roughness must
therefore be more complicated and include a dependence ‘ ‘ . .
the front propagation on the shape of the front, or memory 09 01 02 03 0.4 0.5
effects. Such models as the Kuramoto—Shivashinsky equc. Procal

tion or the model if22] give a KPZ roughness exponent.

FIG. 20. Histogram of the local densitp,., in a three-
dimensional system foc =100 andp=~0.34 in arbitrary units, av-

V1. SUMMARY AND CONCLUSIONS eraged over Bllattice sites.

To conclude, we have described a nonequilibrium perco€@: critical, and supercritical phaselsas been reported in
lation model that shows several phenomena that are urk23l ) _ o
known in equilibrium percolation. Clusters of occupied sites  1he density cycles observed in our model cannot exist in
are removed and refilled into the system at randomly chosefduilibrium systems, which are invariant under time reversal.
empty sites. For densities smaller than a critical density,]herefore, fluctuations in an equilibrium system are usually
there are only finite clusters, as in percolation theory. At theemall and well described by a Gauss distribution around
critical point, the critical exponents assume values differenfOMe Mean valugexcept for the neighborhood of a critical
from percolation theory and they do not satisfy a hyperscalP0int where the next-order terms have to be added to the
ing relation. For densities between the critical density ap{ree-energy functional One consequence is the extensivity
proximately equal to 40.8% and a second density approxiQf eqU|I|br.|um systems, i.e., a part of an equilibrium system
mately equal to 43.5%, the system remains critical, with thdehaves like a smaller system of the size of the part. This is
correlation length diverging slower than the system size. Th&0t true for our model. _ _
value of the exponent that relates the correlation length with  Although our simulations were performed in two dimen-
the system size depends on the density. For densities larg{ons, We expect the same general picture in higher dimen-
than approximately 43.5%, the system has a finite number ofions: Unfortunately, in dimensiors>2, one has to cope
regions of different densities. The number of regions deWith severe finite-size effects. For example, the three-
pends on the density and the transitions between states wiimensional analog of a two-stripe system would be a two-
different numbers of regions are discontinuous and shoW2Yer system. For this state to be stable, the correlation
hysteresis. The shape of the regions is striped for perioditéNdths in the layers have to be small compared to their
boundary conditions. thickness. With a given maximum number of sites approxi-

We were able to describe the dynamics of the system iffately equal to 1.810" that could be simulated, the maxi-
the critical state as well as in the striped state in terms offum thickness of one of two layers in a three-dimensional
patches of different densities. On length scales smaller than®y/Stém is only approximately 125 compared to approxi-
“finger thickness” (critical region or the stripe thickness Mately 2000 in two dimensions. Another problem is that a
(synchronized phagethe density of a patch is fairly homo- visualization of the states like in two dimensions is not pos-
geneous and goes through a temporal cycle: Starting from gible. One therefore has to measure local densities in order to
small density, the density increases until most occupied sitéd€termine the number of stripes that coexist in a given state.
of the patch are removed at-62.5%, and the cycle restarts. FOr the three-dimensional system, we could verify the tran-
The system is therefore synchronized on small length scale§ition to two stripes ap3p~0.34. In Fig. 20, we plotted a
In the critical interval, the density is not large enough tohistogram of the local density in a systenpat p3p,, proving
allow a synchronization over the total width of the system,the existence of two stripes.
leading to the observed power laws. A similar relation be- We also simulated a variant where not an arbitrary site is
tween critical behavior and incomplete synchronization wasselected, but always a site that belongs to the largest cluster
found in the earthquake modd]. There complete synchro- in the system. The simulations were carried out for system
nization is hindered by the boundary conditions. In oursizes up to.=1024. Although the snapshots look different,
model, the global density conservation prevents synchronizeince small clusters are no longer removed, we did not find
tion over distances larger than some correlation length. Iglifferent behavior. The important quantities, i.e., the critical
both models, the correlation length diverges slower than thexponentsp!™, p{?), andp* remain the same.
system size. A model with similar phenomee., subcriti- An interesting modification of the model does not con-
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serve the density of occupied sites exactly, but only on theium critical behavior in nonequilibrium systems. It remains
average. While such a modification would not change the challenge to find a field-theoretical formalism that allows
behavior of an equilibrium system, we expect some imporone to analyze analytically the critical behavior of this and
tant changes in our model. When the density is not stricthfelated models.
conserved, large global density fluctuations can occur and a
sharp distinction between a subcritical, a critical, and a su-
percritical phase is no longer possible. We plan to deal with ACKNOWLEDGMENTS
this model in another pap¢24].
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