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Phase transitions in a nonequilibrium percolation model
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We investigate the percolation properties of a two-state~occupied-empty! cellular automaton, where at each
time step a cluster of occupied sites is removed and the same number of randomly chosen empty sites is
occupied again. We find a finite region of critical behavior, formation of synchronized stripes, additional phase
transitions, as well as violation of the usual finite-size scaling and hyperscaling relations, phenomena that are
very different from conventional percolation systems. We explain the mechanisms behind all these phenomena
using computer simulations and analytic arguments.@S1063-651X~97!07708-8#

PACS number~s!: 05.70.Jk, 05.70.Ln
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I. INTRODUCTION

During the past years, systems that exhibit self-organi
criticality ~SOC! have attracted much attention since th
might explain part of the abundance of fractal structures
nature@1#. Their common features are slow driving or ener
input ~e.g., dropping of sand grains@1#, increase of strain@2#,
tree growth@3#, and spontaneous mutations@4#! and rare dis-
sipation events that are instantaneous on the time sca
driving ~e.g., sand avalanches, earthquakes, fires, or a s
of rapid mutations!. In the stationary state, the size distrib
tion of dissipation events obeys a power law, irrespective
initial conditions and without the need to fine-tune para
eters. There is, however, no reason to expect that sys
with slow driving and instantaneous avalanches always s
SOC. Such systems might also have many small avalan
that release only little energy, or only large avalanches
release a finite part of the system’s energy, or some com
nation of both. SOC systems are naturally at the critical po
due to e.g., a conservation law~sandpile model!, a second
time scale separation~forest-fire model!, a competition be-
tween open boundary conditions and the tendency of ne
boring sites to synchronize~earthquake model@2,5#; see,
however,@6# for a counterexample!, or extremal dynamics
~‘‘evolution’’ model @4#!. Often, the critical behavior break
down when details of the model rules are changed~e.g., the
boundary conditions in the earthquake model@5# or the tree
growth rule in the forest-fire model@7#!.

There are certain parallels between these models
equilibrium critical systems since both consist of many sm
units that interact with their neighbors and spin clusters in
Ising model or clusters of occupied sites in percolat
theory can be compared to avalanches. However, the cri
behavior of nonequilibrium systems can depend on mic
scopic details, as mentioned above, in contrast to equilibr
critical phenomena, which commonly show universal beh
ior. Also, nonequilibrium systems do not satisfy a detaile
balance condition and can, e.g., show periodic behavior. F
thermore, avalanches are usually released when s
variable reaches locally a threshold while other regions
the system might be far below the threshold, and con
quently not all parts of the system look equal. This can
561063-651X/97/56~3!/2467~14!/$10.00
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particular result in more than one diverging length scale,
in the earthquake model@5# or in the forest-fire model@8#.
By contrast, in equilibrium systems the energy is an ext
sive variable, which means that all regions~which are large
compared to the lattice constant! are equal. This is, e.g., th
basis for hyperscaling relations.

In this paper, we discuss in detail a model@9# that belongs
to the mentioned class of nonequilibrium systems with a
lanchelike dynamics. It is a nonequilibrium percolatio
model, where clusters of occupied sites are removed and
same number of sites that have become empty are occu
at random. The density of occupied sites is the control
rameter of the model. The ‘‘avalanches’’ of our model a
removal events and the size of an avalanche is the size
removed cluster. This model illustrates well the fundamen
differences between equilibrium and nonequilibrium, sho
ing various features that are not observed in equilibrium s
tems: The region of small avalanches and the region of i
nite avalanches are separated by a finite region of crit
behavior, where the correlation length diverges more slo
than the system size. The exponent that relates the sy
size with the correlation length depends on the density.
sides the correlation length, there are other relevant len
scales. Since the critical behavior occurs over a finite den
interval, the system can exhibit power laws naturally, wi
out fine-tuning of parameters to a precise value. Theref
our model belongs to the class of SOC systems. In the reg
of infinite avalanches, the system shows synchroniza
with a period that depends on the value of the density.
illustrate and explain all these observations using comp
simulations and analytical arguments. Part of the results w
already published in@9#.

The work is structured as follows. In Sec. II, we define t
model. In Sec. III, the subcritical phase and the critical po
of the model are treated. The mechanism that leads to c
cality and the value of the critical density are explained a
the exponent of the cluster size distribution in one dimens
is calculated analytically. Section IV discusses the criti
phase. The reason for the existence of a whole critical ph
as well as for its properties such as nonstandard finite-
scaling and violation of hyperscaling are explained. The
percritical phase is treated in Sec. V. First, we explain
2467 © 1997 The American Physical Society
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2468 56CLAR, DROSSEL, SCHENK, AND SCHWABL
existence of synchronized stripes and their relation to
subcritical phase~Sec. V A!, then we discuss hysteresis an
the maximum possible number of stripes~Sec. V B!, and,
finally, we investigate stability, movement, and roughness
stripes~Sec. V C!. In Sec. VI, we summarize and discuss o
work.

II. DEFINITION OF THE MODEL

The nonequilibrium percolation model is defined on
d-dimensional hypercubic lattice withLd sites. Each site is
either occupied or empty. The control parameter of the s
tem is the density of occupied sitesr.

The dynamics are defined by the following rules.~i! An
occupied site in the system is chosen at random and
whole cluster ofs occupied sites connected to this site~by
nearest-neighbor coupling! is removed from the system, i.e
the occupied sites of that cluster turn to empty sites.~ii ! We
occupys randomly chosen empty sites~possibly also includ-
ing sites that have become empty due to the removal of
cluster!. ~iii ! Proceed with~i!.

These rules ensure that the density of occupied sitesr is a
conserved quantity. Starting with a random initial state,
system approaches after a transient time a stationary
that is characterized by a certain size distribution of clus
where the time average and ensemble average of all qu
ties are identical. Throughout this paper, we discuss only
properties of the stationary state. These properties, which
explained in detail Secs. III–V, are as follows. For sm
densities, there are only small clusters of occupied site
the system. With increasing density, the size of the larg
cluster increases, and it diverges at a critical densityrc . For
rc,r,rc

(2) , the system is critical, i.e. the cluster size d
tribution is a power law. The size of the largest cluster
verges more slowly than the system size. Forr.rc

(2) , the
system has a finite number of regions of different dens
The region with the highest density has a spanning clust

One can think of the dynamics of this model as ‘‘expl
sions’’ that take place at a randomly chosen site. During
explosion, the whole cluster connected to the explosion
is blown up and its constituents settle down somewhere
in the system. Alternatively, one might think of colonies
animals that are dispersed into all directions by some en
or other event. From a more abstract point of view, one
a nonequilibrium percolation problem.

This model is also closely related to the self-organiz
critical forest-fire model~FFM! @3# when occupied sites ar
equated with trees: Forr,rc , the correlation lengthj and
the mean number of removed sites per stepS are finite and
all properties of the stationary state can be found by look
at a section of the system of linear sizel , with j,l !L. In
this section, there is no conservation of density and the
namics can be characterized by a small ‘‘tree growth’’ r
p5Sr(l /L)d/(12r) and a ‘‘lightning’’ rate f 5(l /L)d.
The tree growth rate is the probability that a given empty s
becomes occupied during one step and the lightning rat
the probability that a given site is ‘‘struck by lightning’’~i.e.,
selected! per step, with the consequence that all ‘‘trees’’ co
nected to this site ‘‘burn down’’~i.e., are removed!. S di-
verges in the limitf /p→0 as
e
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S5p~12r!/ f r. ~1!

In this limit, r approaches the critical valuerc . The dynam-
ics in the small region of sizel are the same as for the SO
FFMI; and the critical exponents close torc are therefore the
same as those of the SOC FFM in the limitf /p→0, when
the f /p dependence is translated properly into ar depen-
dence~simulation results of the SOC FFM can be found
e.g.,@10–13,8#!. Choosingr as the control parameter instea
of f /p allows us to study the FFM beyond the critical poin
This was in fact our original motivation to introduce th
model studied in this paper.

In the following three sections, we discuss in detail t
subcritical, the critical, and the supercritical behavior of t
model. Unless stated otherwise, the considered system
two-dimensional square lattice.

III. SUBCRITICAL PHASE AND APPROACH
TO THE CRITICAL POINT

First, we discuss the parameter regionr,rc , where the
system has a cutoff in cluster size that is independent of
system sizeL. Let S be the mean number of sites remov
from the system in one time step, without taking into acco
the refilling of sites. For very small densities, there exist o
very small clusters and most clusters will consist of only o
site. The process of removing clusters~in this case mostly
single sites! and refilling sites at random does not change t
situation, i.e.,S is of the order of one, and the occupied sit
remain randomly distributed, as for a percolation system
small densities.

With increasing density,S increases also. Removing th
chosen cluster and refilling its sites at random into the s
tem introduces fluctuations in the local density of occup
sites because the removed cluster leaves behind a ‘‘ho
and the refilled sites increase the density in the rest of
system to a value larger thanr. The critical densityrc ,
whereS diverges, and the critical exponents close torc are
therefore different from their values in percolation theory

We define the usual quantities that are investigated in p
colation systems~for an introduction to percolation, se
@14#!: The number density of clusters of occupied sites
size s will be denoted byn(s). Near a critical densityrc ,
n(s) is expected to behave like a power law

n~s!}s2tC~s/smax!, ~2!

where C is a scaling function andsmax}urc2ru21/s. The
average cluster sizeS is defined by

S5

(
s51

`

s2n~s!

(
s51

`

sn~s!

~3!

and is expected to diverge like

S}urc2ru2g. ~4!
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The correlation lengthj is defined as the root-mean-squa
distance between occupied sites on the same cluster, a
aged over all clusters, which leads to

j25

(
s51

`

R2~s!s2n~s!

(
s51

`

s2n~s!

. ~5!

Near a critical point,j is expected to diverge like

j}urc2ru2n. ~6!

The radius of gyrationR of a cluster grows with its sizes
like

R~s!}s1/df , ~7!

with the fractal dimensiondf . These critical exponents ar
related via the scaling relations 1/s5g/(32t)5dfn. Fi-
nally, the strength of an infinite cluster is denoted byP. In
percolation,P follows a power law

P}~r2rc!
b

above the critical point.
In our simulations, we foundrc.40.8%, t52.15(3),

df51.96(2), n51.20(5), and g52.09(5). The values of
these exponents as well as the value of the critical den
rc are different from percolation theory, and they are iden
cal with the corresponding values of the SOC FFM. T
rc2r dependence of our model can be translated into
f /p dependence of the FFM using Eqs.~4! and ~1!, giving

rc2r}~ f /p!1/g.

Thus our values ofs andn can be calculated from those o
the FFM by multiplication withg. t and df are exponents
related to the cluster sizes, so no multiplication withg is
necessary. The exponentb vanishes, as we shall see in Se
IV.

The above-mentioned fluctuations in the local density
occupied sites can easily be seen by looking at a snapsh
the system for densities close enough to the critical dens
A typical stationary state for the densityr539.3% and sys-
tem sizeL51024 is shown in Fig. 1. One can see that t
system consists of a large number of regions with differ
and rather homogeneous density. The typical size of th
‘‘patches’’ does not depend on the system sizeL, provided
that L is large enough. Many properties of the model can
understood by describing the system in terms of th
patches of homogeneous density of occupied sites. For s
average patch size~like in Fig. 1!, it is not always possible to
assign a given site unequivocally to a certain patch. T
changes, however, when the critical density is approach
where the mean patch size is larger and the patch bound
become sharper.

For large system sizeL2@S, only a few sites are occupie
in a given patch per time step and the densityr(t) in a patch
evolves continuously according tor8(t)5p@12r(t)# with
some growth ratep, which leads to
er-
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r~ t !512~12rafter!exp~2pt!. ~8!

Here time is measured since the removal event that produ
that patch, leaving behind a small density of occupied s
r(0)[rafter. We also define the mean densityrbefore of a
patch just before its spanning cluster is removed and the t
T that it takes to increase the density fromrafter to rbefore. We
easily deriveT5(1/p)ln@(12rafter)/(12rbefore)#. The aver-
age density of a patch is

r5
1

TE0

T

dt@12~12rafter!e2pt#512
rbefore2rafter

lnS 12rafter

12rbeforeD . ~9!

We measured the average valuesrbefore'62.5% and
rafter'7.8%, similar to the values found in@15,8#. Interest-
ingly, the same values will play an important role in th
critical phase and in the striped phase discussed in Secs
and V. With the measured values ofrbefore and rafter, we
obtain as average density of one regionr539.2%. For large
enough system sizeL2 and neglecting the interactions be
tween the different regions, the time average of the ove
density r would also ber539.2%. In a real system with
interacting regions, the mean density is in general differ
due to the following two mechanisms.~i! There are tempora
oscillations in patch size: During the growth process of
density of a patch fromrafter to rbefore, all the neighboring
patches have one removal process on an average. Du
each of those removals, also some sites of the central p
are removed because patch boundaries are not cluster bo
aries. This leads to a shrinking of the area of the origi
patch while its density increases, reducing the mean den
from the above calculated value.~Of course, the original
patch size is ultimately restored when the spanning cluste
the central patch and some finite clusters of neighbor
patches are finally removed.! The relative shrinking of the

FIG. 1. Stationary state atr539.3% andL51024 ~with peri-
odic boundary conditions, square lattice with nearest neighbors
cupied sites are black, and empty sites are white!.
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2470 56CLAR, DROSSEL, SCHENK, AND SCHWABL
area is stronger for smaller mean size of removed patc
since the number of sites removed from the central pa
depends on the length of its boundary. For large mean siz
removed patches, the ratio of the initial patch size to the fi
patch size approaches 1, i.e.,r539.2%, which explains why
the density is smaller than the critical density when the m
size of removed patches~of the orderS) is finite. ~Fluctua-
tions in the size of removed patches are complicated to c
sider and do not affect our main conclusions.! ~ii ! The criti-
cal density itself is larger than the above valuer539.2%
because the density at which a removal event takes p
fluctuates around its mean valuerbefore. Assuming a homo-
geneous distribution of occupied sites within a region,
measured the mean densityr for various densitiesrbefore

between 59.3% and 70%. The result is shown in Fig. 2. O
can see that this function has a minimum for the measu
average value ofrbefore'62.5%. Any fluctuation will there-
fore lead to an increase in the mean value ofr. The fact that
the density is so close to its minimum indicates a tendenc
the system to maximize energy dissipation. To obtain
order of magnitude of the shift inrc due to fluctuations, we
calculated numerically the mean density in the simulated
terval @pc ;0.70# of rbefore. The result is 40.5(3)%, which is
close to the correct critical densityrc.40.8%, indicating
that the fluctuations inrbeforecan indeed induce the observe
shift in the density.

These considerations show that the critical state of
model can, to a good approximation, be interpreted as a c
bination of percolation systems of different densities, as a
suggested in@8#. The cluster size distributionn(s) is there-
fore the superposition of the cluster size distributions of
the patches with their different densities betweenrafter and
rbefore, distributed according to Eq.~8!.

Let us first consider the one-dimensional system. Th
the percolation threshold is one and even in dense region
clusters are finite percolation clusters. Removal of a clu
leaves behind a string of empty sites. The system is there
composed of strings of sizeS of different densities that rep
resent different stages in the growth process of an em
string until it is completely filled. A string of densityr con-
tains a cluster of sizes with probability rs(12r)2. If the

FIG. 2. Average densityr for various values ofrbefore between
59.3% and 70%. The minimum is at approximately 62.5.
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system sizeL is large enough, the time average equals
ensemble average and the cluster size distribution shoul
given by

n~s!}E
0

`

dtr~ t !s@12r~ t !#25E
0

`

dt~12e2pt!s~e2pt!2

}E
0

`

dt(
k50

s S s
kD ~21!ke2kte22t

5 (
k50

s S s
kD ~21!k

1

21k
5

1

~s11!~s12!

's22for larges,

in agreement with the exact calculation of@16#. Similarly,
the size distribution of hole clusters is found to be

h~s!E
0

`

dtr~ t !2@12r~ t !#s}
1

s~s11!~s12!

's23for larges,

again in agreement with exact results@17,16#.
For dimensions higher than one, unfortunately, these

culations cannot be carried out. There the number of ne
borst of a cluster of sizes depends not only ons, but also on
the shape of the cluster, and the number of different clus
with a given sizes and a given perimetert is not known
exactly. Furthermore, the integration overt does not go from
zero to infinity since the lowest and highest densities are
0 and 1, respectively. We can, however, determine num
cally the cluster size distribution of a combination of perc
lation systems of different densities. We measuredn(s) in 20
homogeneous systems withL52048 and different densitie
betweenrafter and rbefore, distributed according to Eq.~8!.
The total n(s) of all systems proportional to( i 51

20 ni(s) is
plotted in Fig. 3, together with the cluster size distribution
a percolation system atr5pc'0.593. The exponen

FIG. 3. Upper curve; cluster size distributionn(s) of a homo-
geneous system at the percolation thresholdpc'59.3%; lower
curve; cluster size distributionn(s) of a system with densities be
tweenrafter and rbefore, distributed according to Eq.~8!. Both sys-
tems have sizeL52048. The dashed straight lines have slope 2
and 2.15, respectively.
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t'2.15 for a combination of percolation systems is indist
guishable from the cluster size distribution exponent of
model, showing that the latter is indeed generated by a
perposition of percolation systems. Figure 3 does not sh
the bump observed in our simulations for larges. For large
cluster sizes, the size distribution of patches with den
above the percolation threshold affects the cluster size di
bution. This effect is not present in Fig. 3, where there are
different patch sizes. It remains an open question whethe
exponentt remains the same for much larger values os
than those accessible to simulations. At very large scales
emerging dynamics of patches might become an impor
factor in determining the cluster size distribution.

Another conclusion that can be drawn is thatt always has
to be larger than or equal to thet of the corresponding per
colation problem.n(s) results from a superposition of man
percolation systems, so that apart from the critical perco
tion system, there exist also many systems with finite cu
in the cluster size distribution. These systems increase
weight of the small clusters and the slope ofn(s) decreases
resulting in a largert. For all dimensions and lattice type
investigated so far~see, for example,@13#!, this was true.

IV. THE CRITICAL PHASE, HYPERSCALING,
AND FINITE-SIZE SCALING

For r.rc , one might expect the appearance of an infin
cluster that spans the whole system, as in percolation the
However, the values of the critical exponents forr&rc al-
ready indicate that the situation in our system is very diff
ent from percolation. In contrast to percolation, the hyp
scaling relationd5df(t21) is violated, which means tha
not every part of the system contains a spanning cluste
criticality @10#. This can also be seen easily by looking at t
snapshot of a system atr'rc in Fig. 4. In addition to large

FIG. 4. Stationary state at the critical densityrc'40.8% and
L54096 ~with periodic boundary conditions, square lattice wi
nearest neighbors, occupied sites are black, and empty site
white!.
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patches with high density, there exist also large patches w
lower densities. Most of the patches have densities below
percolation threshold and contain many finite clusters. T
patches with high densities~betweenpc and'62.5%) con-
tain not only finite, but also ‘‘infinite’’~i.e., spanning! clus-
ters. In contrast to ordinary percolation, there is no homo
neously distributed set of large clusters that could join
r5rc to form the infinite cluster that spans the whole sy
tem. Rather, besides the largest cluster, the system con
many other large clusters that represent different gro
stages of the largest cluster itself. The critical behavior of
model occurs over a finite interval@rc

(1)(5rc'40.8%),
rc

(2)('43.5%)], where the cutoff in cluster sizesmax di-
verges, but more slowly thanL2. The correlation length di-
verges more slowly thanL. Since it is not possible to defin
a truly infinite cluster like in percolation in this phase, a
clusters in the system contribute to the defining equation
smax, j, andS. We find

smax}Lf1, j}Lf2, S}Lf3,

with r-dependent exponentsf1,2,3, while t and df remain
unchanged. Table I shows the values of the exponents
different densities. Figure 5 shows a snapshot of the sys
for r50.43.

are

TABLE I. Exponentsf1,2,3 of smax, j, andS for various densi-
ties rc

(1),r,rc
(2) ~L5512, 1024, 2048, 4096!

r f1 f2 f3

0.41 1.46~8! 0.79~2! 1.23~3!

0.42 1.72~6! 0.92~3! 1.50~3!

0.43 1.86~8! 0.97~3! 1.62~3!

0.435 1.92~8! 0.99~2! 1.69~5!

FIG. 5. Stationary state atr543% andL54096~with periodic
boundary conditions, square lattice with nearest neighbors, o
pied sites are black, and empty sites are white!.
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2472 56CLAR, DROSSEL, SCHENK, AND SCHWABL
Figure 6 shows the size distribution of clusterssn(s) for
different system sizes at fixedr ~a! before and~b! after res-
caling. With Eqs.~2! – ~7! one can derive the scaling rela
tions f15dff2 and f35(32t)f1, which are well con-
firmed by the simulations. Forr→rc

(2) , f1,2,3 approach the
valuesdf , 1, and 1/n, respectively.

The latter values are those that one would already h
expected atr5rc

(1) from finite-size scaling theory. In a criti
cal system, a quantityX that scales asuT2Tcu2x}jx/n in an
infinite system, in a finite system is expected to obey
scaling form

X~L,j!5jx/nX̂~j/L !,

with

X̂~x!5H const forx!1

x2x/n for x@1

such that forj!L, X}uT2Tcu2x, like in the infinite system,
and forL!j, X}Lx/n. The standard finite-size scaling exp
nents of smax, j and S would therefore be 1/ns5df ,
n/n51, and 1/n.

The main difference between our system and percola
concerning finite-size scaling is that in percolation a syst
of lengthL largewithout finite-size effects can be generated
putting together systems with finite-size effects of leng
Lsmall. In our model, a reorganization takes place wh
smaller systems are put together since the smaller sys
now can have fluctuations in their number of occupied s
that they could not have when they were isolated. Due to
inhomogeneous nature of the stationary state, these fluc
tions are very large.

We obtain a deeper understanding of the critical beha
of our model when we describe the system again in term
patches of different densities. In Sec. III, we found that
density within a patch grows continuously forr,rc and for
sufficiently large system size. For not sufficiently large s
tem size and forr.rc , however, the finite system size lea
to discontinuous jumps in the density within a patch. T
noncontinuous version of Eq.~9! is @see Eq.~13! below#

FIG. 6. Normalized size distribution of clusters forr50.43 and
L5512,1024,2048,4096,~a! before and~b! after rescaling.
e
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r512
rbefore2rafter

n$@~12rbefore!/~12rafter!#21/n21%

for the density of a system that takesn time steps to go from
rafter to rbefore. In Fig. 7, r is plotted as a function of the
number of patchesn. One can see that a decrease inn raises
the mean density.~Of course, this conclusion can also b
obtained from an analytical calculation.! This effect supple-
ments the two other mechanisms that affect the mean den
presented in Sec. III. For fixedr and changingL, these three
mechanisms have to be in balance with each other. While
step size decreases with increasingL, tending to decrease th
density, the size of the large patches and the fluctuation
rbefore increase, canceling the effect of the smaller step s
on the density.

So far, we have not yet discussed the possibility of fus
and splitting of patches. As soon as two neighboring patc
have a density above the percolation threshold, they fuse
will be removed together. This effect must be balanced b
mechanism that splits patches. As long as the density
patch is below the percolation threshold, neighboring rem
als move the boundary of this patch inward and a splitt
into two patches occurs when opposite boundaries mee
splitting can also occur when a finite cluster connecting t
opposite edges of the patch is removed before the densi
the patch reaches the percolation threshold. Since even l
patches must split at the same rate at which they fuse w
neighboring patches, the shape of patches cannot be ro
but must be ‘‘fingered,’’ with necks of a width that does n
depend on the patch size. The snapshots Figs. 4 and 5 s
the fingered structure. It implies some characteristic len
scale, the ‘‘finger thickness,’’ in addition to the lattice co
stant and the correlation length. This scale is a function
the density and the system size. The existence of sev
length scales was also observed in@8#.

V. SUPERCRITICAL PHASE

A. Synchronized states

At r5rc
(2) , the correlation length finally becomes propo

tional to the system size and the system has an ‘‘infinit
cluster that contains a finite percentage~independent ofL) of

FIG. 7. r as function of the number of patchesn with densities
betweenrafter andrbefore.
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56 2473PHASE TRANSITIONS IN A NONEQUILIBRIUM . . .
all occupied sites in the system. Figure 8 shows a snapsh
the system forr50.45. We see a system with five homog
neous and equally large stripes with different densities. T
stripe with highest density is above the percolation thresh
and contains an infinite cluster~with nonzero strengthP) as
well as some small clusters. The other stripes are below
percolation threshold and, consequently, contain only sm
clusters. When one of the small clusters in this state is
moved, only a few sites are redistributed and the state of
system remains essentially unchanged. When the infi
cluster is removed, a large portion of all occupied sites in
stripe with the highest density are redistributed all over
system. The stripe that used to have the highest density
has the lowest density, while the density of the other stri
has increased. The values of the five densities are the sam
before, except that they are now associated with differ
stripes. If we measure time in units of large redistributions
sites, the state of the system is periodic with period 5.

Increasingr, we find four stripes~Fig. 9!, three stripes
~Fig. 10!, two stripes~Fig. 11!, and finally one ‘‘stripe’’~Fig.
12!, where the infinite cluster spans the whole system. T
spatial shape of stripes depends on lattice symmetry
boundary conditions. In the case of a two-dimensional squ
or triangular lattice with periodic boundary conditions, t
system self-organizes into stripes with the boundaries al
one of the principal axes. For absorbing boundary con
tions, the stripes are replaced by regions of a different sh
~see Fig. 10!.

To understand the occurrence of stripes with differ
densities, we consider first a system with a very high den
r&1. Since we are far above the percolation thresh
pc'0.593 for random site percolation, the strength of
infinite clusterP is close tor. We start with a random initia
state. In the first iteration step, we remove either the infin
cluster, which consists of nearly all occupied sites in

FIG. 8. Stationary state with five stripes atr50.45 and
L54096 ~with periodic boundary conditions, square lattice wi
nearest neighbors, occupied sites are black, and empty site
white!.
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system, or one of the finite clusters, which, consequently,
very small. In the first case, only a few small clusters rem
and most of the occupied sites are redistributed randoml
the system. In the second case, only a small number of
cupied sites are redistributed. In both cases, however,
state of the system changes little and the new state is clos
a completely random state.

If we now decreaser, the remaining clusters~after the
removal of the infinite cluster! become larger and the densi

are

FIG. 9. Stationary state with four stripes atr50.46 and
L54096 ~with periodic boundary conditions, square lattice wi
nearest neighbors, occupied sites are black, and empty sites
white!.

FIG. 10. Stationary state with three regions of different dens
at r50.50 and L52048 ~with absorbing boundary conditions
square lattice with nearest neighbors, occupied sites are black
empty sites are white!.
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2474 56CLAR, DROSSEL, SCHENK, AND SCHWABL
fluctuations increase. When the removed sites are refi
into the system, part of them are positioned in or near th
surviving clusters, where the density then will be larger th
the mean density. In the space between these clusters
density consequently is lower than the mean density~see Fig.
13!. If r falls below a certain thresholdr* , this density
between the surviving clusters becomes smaller than the
colation thresholdpc . Then, there exists no infinite cluster
the system after the first time step~or after a few iterations!

FIG. 11. Stationary state with two stripes atr50.55 and
L51024 ~with absorbing boundary conditions, square lattice w
nearest neighbors, occupied sites are black, and empty site
white!.

FIG. 12. Stationary state atr50.63 andL51024~with absorb-
ing boundary conditions, square lattice with nearest neighbors,
cupied sites are black, and empty sites are white!.
d
se
n
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and the state with one stripe becomes unstable. Evide
r* .pc .

The approximate value ofr* can be derived by the fol-
lowing argument. The number of empty sites after the
moval of the infinite cluster isL2@12(r2P)#. Let this sub-
set of the total lattice be denoted byD. It contains the area o
the infinite cluster and the sites that have already been em
before. In the next step, theL2P occupied sites of the infinite
cluster are redistributed randomly among these empty s
leading to a densityr85P/@12(r2P)#,r in D. In the
vicinity of the clusters that were left over the local density
now higher than before. One can think of this state appro
mately as consisting of many compact clusters embed
into a lower-density background~see also Fig. 13!. It is then
obvious that the homogeneous state with an infinite clu
stretching over the whole system cannot survive ifr8,pc ,
since, in this case, the infinite network that links the fin
high-density regions is broken. On the other hand, ifr8.pc ,
the situation is not fundamentally different from the ca
r&1. Fluctuations in the local density do exist, but th
cannot get stronger with time since the high-density regi
are themselves removed from the system with high proba
ity during the next few iteration steps. Thus we arrive at t
implicit approximate equation for a threshold densityr* ,

P~r5r* !

12r*
5

pc

12pc
. ~10!

In the simulations, we foundr* '0.625 for the square and
0.533 for the triangular lattice. A measurement of the le
hand side of Eq.~10! at r5r* and L51024 yielded ap-
proximately 1.46 for the square and approximately 1.01
the triangular lattice. The values of the known right-ha
side are approximately 1.46 and 1, respectively. Althou
Eq. ~10! is approximate, the agreement with simulation r
sults is very good.

If r falls belowr* , the homogeneous phase becomes
stable and the system rearranges itself to a new statio
state that consists of two homogeneous stripes with eq
area and different densitiesr1 andr2 (r1.r2). For r&r* ,
we have r1.r* and r2,r* . When the infinite clus-

are

c-

FIG. 13. Schematic picture of the stationary state at a den
just abover* . Light ~dark! gray regions have lower~higher! than
average density.
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56 2475PHASE TRANSITIONS IN A NONEQUILIBRIUM . . .
ter in this new state is removed, the density of stripe 1
creases tor3[r12P. Now these sites are reinjected ra
domly into the system, such that stripe 1 is filled up tor2 and
stripe 2 tor1. The net effect is that the two stripes ha
changed their roles.

If we lower r further, we will eventually reach the densit
r for which r15r* . At this point the two-stripe state be
comes unstable~because the highest-density stripe becom
unstable! and reorganizes into a three-stripe state, ther
increasingr1 such thatr1.r* again. The dynamics of the
three-stripe state is analogous to the two-stripe state: W
the infinite cluster is redistributed, the stripes simply e
change their densities (3→2, 2→1, and 1→3). With de-
creasing density, the number of stripesn increases further.

The stripe structure breaks down when the system
becomes so small that the width of a stripe is of the sa
order as the roughness of its boundary. The resulting s
shows patches of different size, but differs from the critic
state in its cluster size distribution. In Fig. 14, the cluster s
distributions for a system atr50.46 in the ‘‘patched’’ state
(L5512,1024) and ‘‘striped’’ state (L52048,4096) are
plotted. The transition between the two seems continuo
due to finite-size effects. With increasingL, the bump be-
comes more distinct because the system tries to separat
infinite cluster from the ensemble of all clusters. There is
scaling ofn(s), not even in the ‘‘patched’’ states. With in
creasing system size, the bump should separate compl
from the size distribution of finite clusters and move towa
s5`. The distribution of densities in the system chang
also continuously with increasingL when the transition from
patches to stripes is made. Figure 15 shows a histogram
the local density forL51024, i.e., for the patched state, a
eraged over 202 sites. This histogram shows pronounc
peaks that are precursors of the stripes. In the limit of infin
system size, these peaks will become infinitely sharp.

The densities of the different stripes are related by sev
equations. Letr1 , . . . ,rn be the densities in a state withn
stripes, starting with the highest density. Additionally, w
define the densityrn11 of the stripe that contained the infi
nite cluster, immediately after the infinite cluster has be
removed from the system and before the removed sites

FIG. 14. Cluster size distribution of a system atr50.46 for
various system sizes (L5512,1024,2048,4096!.
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refilled into the system. As a consequence of a large re
tribution, the different stripes just exchange their densiti
i.e.,

r i 215r i1~r12rn11!~12r i !/@n~12r!1r12rn11#
~11!

for i 52, . . . ,n11. The last factor on the right-hand sid
represents the fraction of occupied sites of the infinite clus
that are refilled in the stripe with densityr i . We finally
obtain

12r1

12r2
5

12r2

12r3
5•••5

12rn

12rn11
. ~12!

Together withr5(1/n)( i 51
nr i we haven equations for

n11 densities. The average density in a system withn
stripes is then

r512
12rn11

n (
i 51

n S 12r1

12rn11
D i /n

512
r12rn11

n$@~12r1!/~12rn11!#21/n21%
. ~13!

This equation was already used in Sec. IV.
The striped phase has several features in common

the critical and subcritical phase: They can all can be ch
acterized by regions of different density. The density of the
regions goes through a cycle and the spanning cluster
region is removed when its density is of the ord
r* '62.5%. Although there is no strict synchronization
the subcritical and critical phase, the system seems to m
tain many features of the synchronized phase, albeit w
more irregularities and fluctuations. If there were no regio
with r local5r* , they would be generated by the same mec
nism as in the synchronized phase. The resemblance to
synchronized phase is especially evident in the o
dimensional case. There the critical point can be interpre
as a synchronized state withr* 51, r`50, and an infinite
number of stripes.

From our understanding of the striped phase and its
bility, we cannot rule out the existence of gaps, i.e., values

FIG. 15. Histogram of the local densityr local for L51024 and
r50.46, averaged over 202 lattice sites.
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2476 56CLAR, DROSSEL, SCHENK, AND SCHWABL
the density for which no synchronized phase is stable.
following scenario could occur. When decreasing the den
of an n-stripe state below the stability threshold, the ne
density in stripe 2 after the restructuring could be too la
~i.e., greater thanpc) for the state to be stable. In this cas
the new (n11)-stripe state would be stable only after low
ering the overall density a bit further untilr2,pc . The in-
termediate state would then have some irregular patc
structure. However, in our simulations we could not obse
this phenomenon.

B. Hysteresis and maximum number of stripes

Since the transition between states with different numb
of stripes is discontinuous, hysteresis effects are to be
pected. When the overall densityr is decreased adiabat
cally, a state becomes unstable whenr1 falls below
r* .0.625 and its number of stripes increases by o
~thereby also increasingr1). Whenr is increased adiabati
cally, however, there is no reason why the system sho
necessarily rearrange itself atr15r* . The stripe with the
highest density can never become unstable since it o
comes closer to the ideal case ofP(r1)5r1, where it con-
sists only of the infinite cluster. The reorganization from
(n11)-stripe state to ann-stripe state is then triggered b
the stripe with second highest densityr2. In the limit of
infinite system size, it takes place when this stripe starts
contain an infinite cluster, i.e., whenr2 approaches the per
colation threshold. As long asr2,pc , even the largest clus
ter in stripe 2 is small compared to the infinite extent of o
stripe and cannot have any effect on the dynamics. For fi
system size, however, the reorganization takes place as
as the ratioj2 /D exceeds a certain critical value, whereD is
a measure for the linear extent of one synchronized reg
~as, e.g., the thickness of a stripe in the two-dimensio
system with periodic boundary conditions!. Therefore, the
effect of hysteresis in a finite system is difficult to obser
when the number of stripesn increases. Only for the trans
tion from the two-stripe state to the homogeneous state c
we identify a significant interval of hysteresis. The two-stri
state could be kept alive up tor50.64 forL54096.

In the following, we argue that there exists an upper lim
to the number of stripesn even in an infinitely large system
When loweringr, the differencer12r2 decreases with eac
additional stripe. If the number of stripesn was not bounded
from above, we would haver12r2→0 andr1→r* . Such a
state could only be stable if the maximum cluster size w
finite in all stripes but stripe 1, which, in turn, could only b
possible if the percolation threshold was identical tor* .
Since the distribution of occupied sites within a stripe is n
completely random, the percolation threshold can be dif
ent from the threshold for conventional site percolation. W
can find its value by simulating the density sequen
(rn ,rn21 , . . . ,r1) for a single stripe. We start with a sta
tionary state with densityr just abover* . We remove the
infinite cluster and fill the system again randomly and co
tinually, and we measure the percentage of the largest clu
for two different system sizes. The results are shown
Table II. We see from Table II that an infinite cluster exis
already forr50.60 sinceP is nonvanishing and does no
decrease with increasingL. Furthermore, we measured th
e
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correlation length of the finite clusters in the interv
0.57<r<0.62, which shows a pronounced peak arou
r50.59 for bothL5512 andL51024~see Table II!. These
results show that the percolation threshold for stripes is v
close~if not identical! to pc for site percolation. Thus state
with r2.0.59 cannot exist, and there must exist a minimu
density gapDr5r12r2 and, consequently, a finite max
mum numberN of stripes. Equation~12! gives a maximum
possible number ofn511(62) stripes and a correspondin
minimum mean densityr542(60.3)%. In our simulations,
due to finite system size, we could observe a maximum nu
ber ofn55 stripes atr50.45 andL54096~see Fig. 8!. For
other lattice types, the maximum number of stripes and
densities where the phase transitions take place are of co
different. The realization of an infinite number of stripe
~i.e., a front moving through a continuum! is possible with
different rules, where the occupied sites of the chosen clu
are removed one by one and are put back into the sys
before the next site is removed~see@18#!.

A schematic phase diagram of the system for all densi
from 0 to 1 is shown in Fig. 16. Since a state withn stripes
is only stable if the thickness of a stripe is much larger th
j2, the phase boundaries depend on the system sizeL for
small L. They become vertical for largeL and the values of
r, where the phase transitions take place, are well defin
As one can also see in Fig. 16, the minimum density of
synchronized phase is smaller than the upper limitrc

(2) of the
critical phase. Since the transition from patches to stripe
discontinuous, it shows also hysteresis.

FIG. 16. Schematic phase diagram of a two-dimensional squ
system for all densities from 0 to 1.

TABLE II. PercentageP of the largest cluster and the correla
tion lengthj for different densitiesr50.57, . . . ,0.62 withL5512
andL51024

r P(L5512) P(L51024) j(L5512) j(L51024)

0.57 57 58
0.58 85 89
0.59 133 145
0.60 0.33 0.34 62 75
0.61 0.46 0.47 36 28
0.62 0.52 0.53 13 14
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56 2477PHASE TRANSITIONS IN A NONEQUILIBRIUM . . .
C. Stability, movement, and roughness of stripes

In systems withn.3 stripes, there exists the possibili
that the stripes might not be arranged in consecutive o
with respect to their densities. However, these arrangem
are not stable, as will be shown in the following. If th
stripes are arranged in consecutive order, the stripe w
highest density always has the same densities in its ne
boring stripes during the complete cycle of lengthn. Each
time the infinite cluster is removed, the borders of the str
it has occupied expandj2 to one side andjn to the other.
Since during one cycle the infinite cluster occupies e
stripe position exactly once, all changes of width canc
Sincej2.jn , the whole pattern moves into the direction
the stripe with second highest density, as seen from the
nite cluster. If the stripes are not arranged in consecu
order, e.g.$r1 ,r3 ,r2 ,r4%, the changes in width do not can
cel. The left neighbors of the infinite cluster during one cy
are r4 ,r2 ,r3 ,r3 and its right neighbors arer3 ,r3 ,r4 ,r2.
Therefore, there is a net change of the width of some str
on the expense of others and sooner or later~depending on
system size! the structure breaks down and the system re
ranges itself to a state with the stripes arranged in cons
tive order. The instability of certain configurations like th
one mentioned above was tested by starting with an ar
cially generated stationary state with the ‘‘wrong’’ order
stripes. After some time, the restructuring to the stable
tionary state could be observed.

Similarly, if the area of different stripes is different or
the values of the stripe densities are not the same after
rearrangement of occupied sites, different stripes ‘‘see
different environment when they are removed. Such sta
therefore cannot be stable. However, when they are c
enough to the stable state, they return to it, as follows fr
the observed stability of striped states. In order to ch
explicitly the stability with respect to variations in the de
sities in a system with two stripes, we start with an unp
turbed state at densityr0 with two stripes of densityr1

0

and r2
0, respectively. The strength of the infinite clust

is P05P(r1
0) andr1

02P05r3
0. Now we perturb the system

by changing the densities tor15r1
01d and r25r2

02d
with smalld.0. The overall densityr0 is kept constant. The
strength of the infinite cluster is nowP5P(r1)
5P(r1

01d)5P01dP8(r1
0). After the removal of the infi-

nite cluster the densities arer35r12P5r3
02d(P821) and

r25r2
02d. Using Eq.~11! one obtains for the highest den

sity in the next iteration step

r1
new5r2

02d1~P01dP8!
12r2

01d

22~r2
01r3

0!1dP8
.
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If this density is lower than the perturbed densityr1

5r1
01d, the system tends to return to the unperturbed c

figuration and the initial state is stable. For stability, thus,
following inequality has to hold:

r2
02d1~P01dP8!

12r2
01d

22~r2
01r3

0!1dP8

,r2
01P0

12r2
0

22~r2
01r3

0!
1d.

On the right-hand side, we have usedr1
05r2

01P0(12r2
0)/

@22(r2
01r3

0)# from Eq. ~11!. This inequality can be rewrit-
ten as

P8,
4~12r0!13P0

$12P0/@2~12r01P0!#%~12r2
0!

. ~14!

We measured all quantities that appear in Eq.~14! in the
density interval where the two-stripe state could be obser
and found that it is completely contained in the interv
where this condition is fulfilled.

As already mentioned above, the whole pattern of stri
moves into the direction of the stripe with second high
density seen from the infinite cluster. This movement can
observed in the simulations for all states withn.2. The net
velocity in a two-stripe state is zero due to symmetry. W
measured the velocity of this movement for stationary sta
with three and four stripes atr550% and 46%. The result
arev'4.360.5 lattice sites per iteration step forr550% and
v'5.260.5 for r546%. Since the degree to which the infi
nite cluster reaches into the neighboring stripes depend
their correlation lengths, the velocity is essentially det
mined by the density in stripe 2. As one can see from Ta
III, r2 is larger forr546% than forr550%, therefore the
velocity is higher forr546%. The movement of the strip
boundaries can be seen in Fig. 17, where a sequence o
tionary states of a three-stripe state is shown.

TABLE III. Roughness exponenta, growth exponentb, and
velocity v of the stripes for various densities (200<L<2000).

r
No. of
stripes r1 r2 a b v

0.46 4 0.63 0.53 5.2~5!

0.50 3 0.66 0.51 0.44~10! 0.35~5! 4.3~5!

0.55 2 0.66 0.44 0.46~10! 0.25~5! 0
FIG. 17. Sequence of stationary states of a three-stripe state atr550% andL51024. The snapshots were taken at timest0, t0151,
t01102, t01153, andt01204.
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2478 56CLAR, DROSSEL, SCHENK, AND SCHWABL
As one can see in Fig. 8, the stripes seem to have ro
rather than smooth boundaries. When the infinite cluste
removed, all finite clusters in the adjacent stripes that
connected to it are also removed. This leads not only to a
velocity in one preferred direction, but also to a roughen
of the stripe boundaries, even in situations where the~artifi-
cially generated! initial state consists of strictly horizonta
stripes.

The roughness of the interface is characterized by an
ponenta that describes how the saturation width of the
terfacewsat scales with its lengthL,

wsat~L !}La.

The interface widthw is defined as the root mean square
the differencesy(x)2 ȳ (x), wherey(x) @ ȳ (x)# is the@aver-
aged# y coordinate of the interface~assuming horizonta
stripes!

w~L,t !5A1

L(
i 51

L

@y~x,t !2 ȳ ~ t !#2,

with ȳ (t)5(1/L)( i 51
Ly(x,t). We assume thaty(t) is single

valued, i.e., there are no overhangs. This assumption is
ways correct at sufficiently large scales.

To characterize the time-dependent dynamics of
roughening of the interface widthw(t), the growth exponen
b is introduced by

w~L,t !}tb.

For smallt, there is no dependence onL since the informa-
tion on system size needs a certain amount of time to spr
For an introduction to interface roughening, see@19#.

We measured the roughness exponenta as well as the
growth exponentb for stationary states with two and thre
stripes atr555% and 50%. States with a larger number
stripes can only survive in large systems, so we were not
to scan a broad enough range of system sizesL to determine
an exponent. Since at sufficiently large scales there is
up-down symmetry in the casen52, which is absent in the
casen53, where the boundary moves in one preferred
rection, we expect different exponents.

The results fora andb are shown in Table III. Figure 18
shows the roughening of the boundary for the casesn52
and n53. The simulation results are compatible with t
valuesa51/2 andb51/3 for n53 anda51/2 andb51/4
for n52, although other values cannot be ruled out. T
former exponents are those of the Kardar-Parisi-Zhang
versality class @20#, whereas the latter belong to th
Edwards-Wilkinson universality class@21#, describing an in-
terface in thermal equilibrium. For alln>3, the boundaries
exhibit a net movement in one preferred direction, th
breaking the up-down symmetry. Therefore, we expect
find the KPZ universality class also in the casesn>4 that
could not be investigated in the simulations.

In the limit of a large number of stripesn→`, the move-
ment of the infinite cluster is reminiscent of the movement
a front. To study the dynamics of such a front, we introdu
a third state~‘‘excited’’ ! that marks the sites belonging to th
front. The excitation spreads at each time step to all of
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nearest occupied neighbors leaving behind an empty site
order to ensure a constant density, one has to reoccupy
domly chosen empty sites. Starting with a flat excitati
front in an initial state of average densityr, after a short time
either the front will have disappeared or the system will ha
evolved to a stationary state, where the front propaga
quasideterministically in one direction. After leaving the sy
tem at one end, it reenters at the opposite end. Although
front state can be interpreted as a stripe state withn5`,
there is one important difference. In the stripe state, the
finite cluster sees a medium with density belowpc in front of
it, whereas in the front state, this density is abovepc . One
therefore cannot expect to find KPZ behavior as in the str
state. Instead, the shortest paths~using only occupied sites!
from the sites of the front at timet50 to the sites of the front
at some later time have a Gaussian distribution, leading
width of the interface that scales as ln(L), i.e., a50. Figure
19 shows the saturation width as function of the system s
together with a logarithmic fit.

One can also compare this behavior with the behavio
an excitation front in a percolation system without period
boundary conditions perpendicular to the front, i.e., a sys

FIG. 18. Width w of the stripe boundary in the casesn52
~lower curve! andn53 ~upper curve! for small t. The dashed lines
have slope 1/4 and 1/3, respectively.

FIG. 19. Saturation widthwsat of an excitation front at
r545% andrbefore574% (L5200,500,1000,2000!. The smooth
curve is a logarithmic fit.
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of sizeL parallel to the front and of size ‘‘̀’’ perpendicular
to it. The ‘‘infinite’’ extension perpendicular to the fron
would in practice be realized by providing a constant, hom
geneous density ahead of the front, such that the front
never pass through a region where it already has been be
and additional correlations due to sites left over from the
passing are eliminated. In this case, the stability argum
of Sec. V A and of@18#, which lead to the instability for
rbefore,r* , are no longer valid, and one can investigate
properties of the front in the whole density interval
rbeforeP@pc ;1#. Then one can also measure the expon
that describes how the velocity of the front vanishes wh
the densityrbefore approachespc . As in the preceding para
graph, we expect that such a front has a roughness expo
a50. Models that yield a front of finite roughness mu
therefore be more complicated and include a dependenc
the front propagation on the shape of the front, or mem
effects. Such models as the Kuramoto–Shivashinsky eq
tion or the model in@22# give a KPZ roughness exponent.

VI. SUMMARY AND CONCLUSIONS

To conclude, we have described a nonequilibrium per
lation model that shows several phenomena that are
known in equilibrium percolation. Clusters of occupied sit
are removed and refilled into the system at randomly cho
empty sites. For densities smaller than a critical dens
there are only finite clusters, as in percolation theory. At
critical point, the critical exponents assume values differ
from percolation theory and they do not satisfy a hypersc
ing relation. For densities between the critical density
proximately equal to 40.8% and a second density appr
mately equal to 43.5%, the system remains critical, with
correlation length diverging slower than the system size. T
value of the exponent that relates the correlation length w
the system size depends on the density. For densities la
than approximately 43.5%, the system has a finite numbe
regions of different densities. The number of regions
pends on the density and the transitions between states
different numbers of regions are discontinuous and sh
hysteresis. The shape of the regions is striped for perio
boundary conditions.

We were able to describe the dynamics of the system
the critical state as well as in the striped state in terms
patches of different densities. On length scales smaller th
‘‘finger thickness’’ ~critical region! or the stripe thickness
~synchronized phase!, the density of a patch is fairly homo
geneous and goes through a temporal cycle: Starting fro
small density, the density increases until most occupied s
of the patch are removed atr'62.5%, and the cycle restart
The system is therefore synchronized on small length sca
In the critical interval, the density is not large enough
allow a synchronization over the total width of the syste
leading to the observed power laws. A similar relation b
tween critical behavior and incomplete synchronization w
found in the earthquake model@5#. There complete synchro
nization is hindered by the boundary conditions. In o
model, the global density conservation prevents synchron
tion over distances larger than some correlation length
both models, the correlation length diverges slower than
system size. A model with similar phenomena~i.e., subcriti-
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cal, critical, and supercritical phases! has been reported in
@23#.

The density cycles observed in our model cannot exis
equilibrium systems, which are invariant under time revers
Therefore, fluctuations in an equilibrium system are usua
small and well described by a Gauss distribution arou
some mean value~except for the neighborhood of a critica
point where the next-order terms have to be added to
free-energy functional!. One consequence is the extensiv
of equilibrium systems, i.e., a part of an equilibrium syste
behaves like a smaller system of the size of the part. Thi
not true for our model.

Although our simulations were performed in two dime
sions, we expect the same general picture in higher dim
sions: Unfortunately, in dimensionsd.2, one has to cope
with severe finite-size effects. For example, the thr
dimensional analog of a two-stripe system would be a tw
layer system. For this state to be stable, the correla
lengths in the layers have to be small compared to th
thickness. With a given maximum number of sites appro
mately equal to 1.63107 that could be simulated, the max
mum thickness of one of two layers in a three-dimensio
system is only approximately 125 compared to appro
mately 2000 in two dimensions. Another problem is tha
visualization of the states like in two dimensions is not po
sible. One therefore has to measure local densities in ord
determine the number of stripes that coexist in a given st
For the three-dimensional system, we could verify the tr
sition to two stripes atr3D* '0.34. In Fig. 20, we plotted a
histogram of the local density in a system atr&r3D* , proving
the existence of two stripes.

We also simulated a variant where not an arbitrary site
selected, but always a site that belongs to the largest clu
in the system. The simulations were carried out for syst
sizes up toL51024. Although the snapshots look differen
since small clusters are no longer removed, we did not fi
different behavior. The important quantities, i.e., the critic
exponents,rc

(1) , rc
(2) , andr* remain the same.

An interesting modification of the model does not co

FIG. 20. Histogram of the local densityr local in a three-
dimensional system forL5100 andr'0.34 in arbitrary units, av-
eraged over 113 lattice sites.



th
th
o
tl
d
su
it

e
if

ib

ns
ws
nd

ein-
by
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serve the density of occupied sites exactly, but only on
average. While such a modification would not change
behavior of an equilibrium system, we expect some imp
tant changes in our model. When the density is not stric
conserved, large global density fluctuations can occur an
sharp distinction between a subcritical, a critical, and a
percritical phase is no longer possible. We plan to deal w
this model in another paper@24#.

The existence of these fundamental differences betw
equilibrium and many nonequilibrium systems makes it d
ficult to apply methods developed for the study of equil
et

tt
e
e
r-
y
a
-

h

en
-
-

rium critical behavior in nonequilibrium systems. It remai
a challenge to find a field-theoretical formalism that allo
one to analyze analytically the critical behavior of this a
related models.

ACKNOWLEDGMENTS

S.C. was supported by the Deutsche Forschungsgem
schaft Contract No. Schw 348/7-1. B.D. was supported
EPSRC Grant No. GR/K79307.
er.

L.

.

@1# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
~1987!.

@2# Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. L
68, 1244~1992!.

@3# B. Drossel and F. Schwabl, Phys. Rev. Lett.69, 1629~1992!.
@4# P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083~1993!; M.

Paczuski, S. Maslov, and P. Bak, Phys. Rev. E53, 414~1995!.
@5# A. A. Middleton and C. Tang, Phys. Rev. Lett.74, 742~1995!.
@6# S. Lise and H. J. Jensen, Phys. Rev. Lett.76, 2326~1996!.
@7# B. Drossel, Phys. Rev. Lett.76, 936 ~1996!.
@8# A. Honecker and I. Peschel, Physica A239, 509 ~1997!.
@9# S. Clar, B. Drossel, and F. Schwabl, Phys. Rev. Lett.75, 2722

~1995!.
@10# C. L. Henley, Phys. Rev. Lett.71, 2741~1993!.
@11# P. Grassberger, J. Phys. A26, 2081~1993!.
@12# K. Christensen, H. Flyvbjerg, and Z. Olami, Phys. Rev. Le

71, 2737~1993!.
@13# S. Clar, B. Drossel, and F. Schwabl, Phys. Rev. E50, 1009

~1994!.
@14# D. Stauffer and A. Aharony,Introduction to Percolation
t.

.

Theory~Taylor and Francis, London, 1992!.
@15# T. C. Chan, H. F. Chau, and K. S. Cheng, Physica A222, 185

~1995!.
@16# B. Drossel, S. Clar, and F. Schwabl, Phys. Rev. Lett.71, 3739

~1993!.
@17# M. Paczuski and P. Bak, Phys. Rev. E48, R3214~1993!.
@18# S. Clar, K. Schenk, and F. Schwabl, Phys. Rev. E55, 2174

~1997!.
@19# A.-L. Barabasi and H. E. Stanley,Fractal Concepts in Surface

Growth ~Cambridge University Press, Cambridge, 1995!.
@20# M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56,

889 ~1986!.
@21# S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, S

A 381, 17 ~1982!.
@22# N. Provatas, T. Ala-Nissila, M. Grant, K. R. Elder, and
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